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THE ENUMERATION OF MAXIMAL CLIQUES OF LARGE GRAPHS*

E. A. AKKOYUNLU"

Abstract. An algorithm for enumerating maximal cliques (complete subgraphs) is proposed.
The aim is to deal with the difficulties caused by the size of the problem.
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1. Introduction. The problem considered here is best formulated in terms
of an undirected graph G (Fig. 1). If So is the set of nodes and E the set of edges,
the goal is to identify completely connected subgraphs (or cliques) which are
maximal, b

c

a

FIG.

More generally, So is a set of elements, and there is defined over pairs in So
a symmetric, nontransitive binary relation R. (E is a set of pairs which are in rela-
tion R.) A subset S of So is a maximal subset (ms) if

(i) every pair in S is in relation R, and
(ii) S is not a proper subset of any set with property (i).

The ms are of interest in many contexts: graph theory (the coloring problem),
switching theory (state minimization [1]), operations research (scheduling [2],
[3]), information systems, etc. There are several known algorithms [1], [4], [5],
[6] for enumerating these sets. As a rule, however, these algorithms cannot handle
large problems [3] efficiently. The difficulty arises because the terms generated
include duplications, or even submaximal sets. To avoid this, a list of all the terms
has to be kept and repeatedly scanned. In the worst cases, the list cannot be
accommodated in core.

This paper proposes a new algorithm which is especially efficient in dealing
with large problems, and has none of the shortcomings mentioned above. The set
generated corresponds precisely (and without duplications) to the set desired.
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There is thus no need to refer to previously generated terms, and no need to
maintain a list in core. Even for the largest problems memory size is not a critical
limitation.

Let ///denote the set of ms. Certain subsets of /are also important. In the
state minimization problem where the relation R is mutual compatibility, what is
wanted is minimal cover, i.e., the smallest number of ms in which each element
occurs at least once. In scheduling, on the other hand, R is mutual exclusion, and
one is typically interested in finding a minimal pair-cover, i.e., the smallest subset
of ,//’ such that every pair in relation R occurs together in some term. This paper
is mainly concerned with an algorithm for enumerating the set ///.

The information contained in the graph G is normally represented in the
form of the table in Fig. 2. The somewhat redundant representation of Fig. 3 will
be used instead, for it displays certain features more saliently. In particular, each
element x divides the remaining elements into two sets: the set Cx of elements
which are in relation R to x, and the set Dx of elements which are not. This is
made explicit in Fig. 3.

2. Preliminaries. In Fig. 3, consider the row associated with c. For every ms,
exactly one of the following statements must be true"

1. The ms includes {c).
2. The ms includes at least one of {a, e, h).
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To verify if both statements were true, the ms would include one of the disallowed
pairs, ac, ce, ch. If neither were true, the addition of c to this term could not pos-
sibly violate a constraint, so that the term could not have been maximal.

Consider next row b. An ms which includes b cannot include any of a, e, or h
since {a, e, h) Db. This, together with the above, means that every ms which
includes b must also include c. To generalize, we state:

If D
_

Dy, then x occurs in every ms where y occurs.
Further notation is introduced at this point in order to facilitate the manipula-

tion of subsets of f/ according to certain characteristics. For S
_

So, let L(S)
denote "the set of all ms which include at least one element of S." Similarly, let
E(S) denote "the set of all ms which include every element of S." Thus,

L(S) {M[M ./g, S M 4: },

E(S) {M[M ./g, S M}.
The following relations are direct consequences of these definitions:

(1) L({x}) ({x}),

(2) E(S1) 0 E(S2) E(S1 U S2),

(3) L(S1) L(S2) L(S1) if S c2 $2

(4) L() ,
Also, since any ms which includes x can only include elements in Cx, we can write

E({x})
E({x}) 0 L(S)=

E({x}) O L(S 0 C)

if xS,

otherwise.

More generally,

(5) E({x}) f3

3. Enumeration through disjoint subproblems. In the previous example, where

So {a, b, , d, e,f g, h}, the set of all ms can be written

/ L(So) L({a, b, c, d, e,f, g, h}),
which simply states that /g is the set of all ms which include at least one element.
As discussed above, g has two disjoint subsets,

(i) all ms which include {c},
(ii) all ms which include at least one of {a, e, h},

and this is expressed by writing,

,/g L(So) E({c}) U L({a, e, h}).
To formalize this notion, we write

(6) L(S U {x})= E({x})U (L(S) (’1 L(Dx)).

Here, the right-hand side is the union of disjoint sets: all ms which include x, and
all which exclude x but include some element in S.
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In what follows, the notation will be simplified by writing L(a, b,..., x)
instead of the formally correct L((a, b, ..., x)), etc. Equations (1) through (6) can
be used to reduce the problem of enumerating /d into a series of smaller problems.
The key step is the substitution specified by (6) which is applied repeatedly. For
the problem in Fig. 3, we have

/// L(a, b, c, d, e,f, g, h) E(c) U L(a, e, h)

E(c) U E(a) U (L(e, h) L(b, c, e,f, g))

E(c) U E(a) U ((E(e) U L(h) L(a, b, c,f, h)) L(b, c, e,f, g)).

Since L(h) E(h), equation (5) allows the reductions

g(e) L(b, c, e, f, g) E(e),

E(h) L(a, b, c,f, h) L(b, c, e,f, g) E(h) f) L(./ g),

dd E(c) 1.3 E(a) U E(e) U (E(h) f3 L(. g)).

Now L(f, g) E(f) U (L(g) L(a, b, e)), so that we write,

E(h) L(f, g) (E(h) f"l E(f)) U (E(h) f"l L(g) f"l L(a, b, e)),

/d E(c) U E(a) U E(e) U (E(h, f) U (E(h) f"l L(g) f"l L(a, b, e))).

Using equation (5), we have

E(h) f"l L(g) f"l L(a, b, e) E(h) L(g) f"l L(a).

Finally, since L(g) ffl L(a) E(g) f"l L(a) , we obtain

’/ E(c) U E(a) U E(e) U E(h,f).

The problem is thus reduced to four smaller problems whose solutions correspond
to disjoint subsets of //. Each of these can now be solved separately and the
complete solution dd obtained.

In evaluating E(a), for example, only the set Ca need be considered. This
corresponds to Fig. 4 whose ms set is {d, h}. The addition of a to every member of
this set yields E(a) {ad, ah}. Similarly, E(h,f) is obtained by adding h and f to
each term of the ms set derived from Fig. 5 which consists of variables in Ca f) Cy
alone. This ms set is simply {g} so that E(h,f) {fgh}.

To generalize, let S be a set for which x, y e S implies x e Cy. Then,

S if f-lxs Cx ,
(7) E(S)

E(S) f’) L(f’) xs Cx) otherwise.

4. Enumeration algorithm. This section formalizes the approach outlined
above by giving an algorithm for enumerating rid. The algorithm manipulates

F6. 4
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symbolic expressions composed of E- and L-sets. The data base consists of the
sets So, C, and Dx, for x So. The algorithm is organized around a pushdown
stack which serves to store partially formulated disjoint subproblems. Items on
the stack are expressions involving sets of the form E(S) and L(S). A possible item
on the stack could be

E(h) fq L(g) fq L(a, b, e).

Specifically, each item on the stack is a multiple set intersection between one or
more L-sets and at most one E-set.

Starting with the expression L(So), the algorithm consists of repeated applica-
tions of equations (6) and (7), supplemented by the reduction equations (1)
through (5). Equation (6) is used to split an expression into two others which corre-
spond to disjoint subsets of the original set; these are then pushed on the stack,
and the process is repeated until an expression of the form E(S) is obtained. Equa-
tion (7)is then applied once.

ALGORITHM A.
Input: So, {Cxlx So}, {Dlx So}.
Output:
Step (Initialize). Place L(So)on the stack.
Step 2 (Prepare to split). (a) If the stack is empty, stop.
(b) Unload the top expression from the stack and call it T. T is a multiple

intersection whose form is either

(s’) f

or simply

In the first case set V S’, in the second case set V
Step 3 (Choose the L-term to be split). (a) Select k I so .that S has the

fewest elements possible. Also choose x S, and let S S {x}.
(b) If S 3 go to Step 5. (Equation (1) can be applied instead of equation

(6).)
Step 4 (Formulate the second subproblem). (a) Compute

if V=
Q=

Dx fq(fqrvCr) otherwise.

(b) If Q go to Step 5. (Every ms which covers V also covers {x}.)
(c) Make a copy of T with L(S) f3 L(Q) substituted for L(S,), and load this

copy on the stack.
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Step 5 (Formulate the first subproblem). (a) Let J {j[je l, xeSj}. If
J go to Step 6. (Equation (7) is applicable.)

(b) For all j e J compute Wj Sj f"l C,,. If W 5 for any j J go to Step 2.
(No ms covers both V and {x} .)

(c) Place the expression

j6J

on the stack and go to Step 2.
Step 6 (Apply equation (7).) (a) Compute

P= Cy.
yeVw{x}

(b) If P output V U {x}, then go to Step 2.
(c) Load the stack with E(V U {x}) L(P), and go to Step 2. (End Algor-

ithm A.)
In practice, rather than compute the set

Cy
yeV

each time, it is more convenient to store it along with the associated item on
the stack.

5. Conclusion. Techniques for generating maximal subgraphs were discussed
with reference to the difficulties caused by the size of the problem. An effective
procedure was proposed for systematically reducing these problems into smaller
ones whose ms sets are disjoint. An important feature of the enumeration algor-
ithm is that it is organized around a stack, so that its core requirements are
minimal.

Acknowledgments. would like to thank Professor S. H. Unger of Columbia
University for the long discussions which helped focus this work.

REFERENCES

[1] M. C. PAULL AND S. H. UNGER, Minimizing the number ofstates in incompletely specified sequential
switching junctions, IRE Trans. Electronic Computers, EC-8 (1959), pp. 356-367.

[2] E. A. AKKOYUNLU, Allocating facilities to interdependent activities, Proc. Fifth Annual Princeton
Conference on Information Sciences and Systems, Princeton, N.J., 1971, pp. 86-87.

[3] A. D. HALL, JR. AND F. S. ACTON, Scheduling university course examinations by computer, Comm.
ACM, 10 (1967), pp. 235-238.

[4] P. M. MARCUS, Derivation ofmaximal compatibles using Boolean algebra, IBM J. Res. Develop., 8

(1964), pp. 537-538.
[5] G. D. MULLIGAN AND D. G. CORNEIL, Corrections to Bierstone’s algorithm for generating cliques,

J. Assoc. Comput. Mach., 19 (1972), pp. 244-247.
[6] R. M. BURSa’ALL, Tree searching methods with an application to a network design problem, Machine

Intelligence, (1967), pp. 65-85.



SIAM J. COMPUT.
Vol. 2, No. I, March 1973

THE SPECIALIZATION OF PROGRAMS BY THEOREM PROVING*
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Abstract. Suppose a program P is written to accept a set of inputs I. If we are only interested
in a nonempty subset I* of L we usually can simplify P to another program P* such that P* runs
faster on I* than P does. The problem of specialization is to find such P*. In this paper, the program
P and the input I* will be specified by axioms. Using these axioms, we can obtain P* from P through
theorem-proving techniques.

Key words, axioms, compilers, describing formulas, halting clauses, programs, resolution,
specializers, theorem proving.

1. Introduction. Very often we encounter the following question:
We have written a program P which is intended to accept a set I of input

data. However, later on we are only interested in a restricted subset I* of input
data. Of course, P still can accept I* and produce an output. However, since I*
is smaller than I, we should be able to modify program P so that the modified
program can run faster on set I*. The question now is how do we modify pro-
gram P?

This problem has been considered by Dixon 1], 2] and Futamura 3].
Dixon has written a program, called Specializer, to do the modification. What the
specializer does is the following: Suppose P is a program which has N input
variables (arguments). Suppose that specific values are assigned to M of these
arguments (M _< N). Then, P* is a program which takes only N M arguments.
The other variables have been "fixed" and P* is a specialized version of P for
specific values of the fixed arguments. The advantage of specialization is the same
as compilation: P* usually runs faster than P. P* may also take less storage space
than P.

Dixon’s specializer is written in the LSl 5] language. It can only specialize
LIsP programs. The restriction of input is done by fixing values of some input
variables. Roughly speaking, the specializer performs the following two opera-
tions (i) deleting any instruction which can be evaluated and replacing it with a
quoted value, (ii) removing of a branch of a conditional instruction if it is not
needed. A "pattern specializer," also defined by Dixon [2], uses a more general
approach.

In this paper, we shall use a different approach to program specialization.
That is, we shall use theorem-proving techniques [6], [7], [8]. Our. approach can
be applied to any program representable by a flow chart. Therefore, our technique
is very general. Furthermore, the restriction of input need not be done by fixing
values of some input variables. It can be done more generally. For example, some
input variable may either have a range of values, or satisfy some relations.

Our approach is based upon the result given by Lee and Chang 4]. In [4],
a program is described by a set of logical formulas. Considering these logical
formulas as axioms, we can use the resolution principle 7] to deduce logical
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consequences from these axioms. It was shown in [4] that a halting clause can be
deduced if and only if the program terminates. Based upon the deduction of a
halting clause, we shall show in this paper how a specialization of a program can
be obtained.

It is assumed that the reader is familiar with the resolution principle. For a
comprehensive study of this inference rule, consult [6], [7], 8.

2. Describing formulas of a program. The following definitions are from [43.
Programs are represented by directed graphs.

DEFINITION. A program consists ofan input (variable) vector x (x, ..., xL),
a program (variable) vector y (Y l, "", Yt), an output (variable) vector
z (zl, ..., zN), and a finite directed graph such that the following conditions
are satisfied:

(i) In the graph, there is exactly one vertex, called the start vertex S, which
is not a terminal vertex of any arc;there is exactly one vertex, called the halt
vertex H, which is not an initial vertex of any arc; and every vertex v is on some
path from S to H.

(ii) In the directed graph, each arc a not entering H is associated with a
quantifier-free formula P(x, y) and an assignment y fa(x, y); each arc a enter-
ing the halt vertex H is associated with a quantifier-free formula Pa(x, y) and an
assignment z +-- f,(x, y). P is called the testing predicate associated with the arc a
and P,(x, y) is called the testing formula associated with the arc a.

(iii) For each vertex v (v 4: H), let a l, a2, ar be all the arcs leaving from
v and P,, P2, ", P,r be the testing predicates associated with arcs a l, a2, ..., ar
respectively. Then for all x and y, one and only one of Pal(x, y), Pa2(x, y), ...,
Par(X, y)is true.

Example 1. Consider a program which accepts two nonnegative integers x
and x2. The only testing predicate available is the testing of whether a number
is equal to zero and the only functions used are addition and subtraction. The
program is as follows.

y -- x
Y2 -X2

1: If Y2 0, then [z y, haiti;
else[yly + 1,

Y2 - Y2 1,
go to 1].

where x and x2 are input variables, y and Y2 are program variables and z is the
output variable.

This program can be represented by the directed graph shown in Fig. 1.
Given an input x for a program, the execution of this program is carried out

according to the following algorithm:
Step 1. The control is always assumed to be initially at S.
Step 2. Let j 0, v S and yO be the value of the program variable.
Step 3. If v H, the execution is terminated; otherwise, go to the next step.
Step 4. Let aj be the arc of which v is the initial vertex and P,j(x, y)is true.
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Yl,-.-.Yl +

Y2,.-.Y2-1

(a)

Y2O =0

(c)

FZG.

Let v+ be the terminal vertex of aj. Then the control moves along a to vertex
vj+ and one of the following assignments is executed.

(a) yJ + faj(X, Y) if vJ+ is not H,
(b) z faj(x, yJ) if vJ+ is H.
Step 5. Let j j + and go to Step 3.
The above execution is said to be finite if and only if for some k, vk H. In

this case, we say that the program terminates for the input x.
The above rules concerning the execution of programs can be conveniently

described by logical formulas. This is done by using an ingenious concept defined
below.

DEFINITION. For each vertex U in a program, Qi(x, y) (Qi(x,z) if l) H) is
defined as the condition that the control is passed from S to vi with the input
vector x and with the program vector changed to y (or the output program vector
changed to z if vi H). This condition is called the access condition of vi. In other
words, if the input vector is x, then whenever the control is passed to vertex vi,
Q(x, y) is T. The predicate Qi is called the access predicate of vi.

Since the control is always assumed to be initially at S, we may simply let
Qs(x,y) be T. Because the passing of the control to vertex H means that the
program terminates, Q, plays an important role in program analysis, as we shall
see in the next section. In the sequel, we shall call Qn the halting predicate.

Let a be an arc of a program whose initial vertex is v and whose terminal
vertex is v. Suppose P(x, y) and f,(x, y) are the testing formula and assignment
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associated with arc a. If the control is passed to vi (thereby Qi(x, y) is T) and if
Pa(X, Y) is T, then the control will be passed through arc a to vertex vj, with y
assigned fa(X, y) (thereby Qj(x, f,(x, y)) is T). Thus we can describe the execution
by a formula defined as below.

DEFINITION. Let a be an arc in a program. Let vi and v be the initial and
terminal vertices of arc a respectively. Suppose P,,(x, y) and fa(X, Y) are the testing
formula and assignment associated with arc a respectively. Then, we define a
formula W associated with arc a as follows:

Wa Q(x, y) & Pa(x, y) Q(x,f,(x, y)).

W is called the describing formula for arc a. If we use a clause C to represent W,
then Ca is called the describing clause for arc a.

Note that if vi S, then Qs(x, y) T and W becomes:

Wa :P(x, y) Q(x,f(x, y)).

Example 2. Consider the program in Example 1. The describing formulas for
arcs a, b and c are:

w,,:Q(x,x,x,,x),

Wb’QI(xl,Xz, yl, Y2)& Y2 # O Q(xl ,x2, yl + 1,y2- 1),

Wc’QI(X1 ,X2, ill, Y2) & Y2 0 -- QH(x,x2, yi).

DEFINITION. Let arcs a, a2, ag be all the arcs in a program P. Then
(y)(W,1 & W2 &..,& WR is called the describing formula of the program P,
where every Wa,, =< _< R, is the describing formula for arc ai.

In the sequel, the describing formula of a program P will be denoted as Ap.

We shall represent A p by a set of clauses. Ap will be viewed as axioms describing
the program P.

3. The specialization of programs.
DEFINITION. A clause in which every predicate that appears is a halting

predicate is a halting clause.
Suppose a program P is written for input I. Let A p denote the describing

formulas of the program P, At denote axioms concerning testing predicate and
assignment functions in P, and A denote axioms concerning the input I.

DEFINITION. For a set S of clauses, the resolution of S, denoted by R(S), is
defined as the set consisting of the members of S, together with all the resolvents
of pairs of members of S. The n-th resolution of S, n >= 0, denoted by R"(S), is
defined by R(S) S and R"+ (S) R(R"(S)).

In 4], the following theorem is proved.
THEOREM. Let P be a program. Let S denote the set of clauses representing

Ap &. At & AI. Then P terminates if and only iffor some n >= 0, there is a halting
clause CH R"(S).

Example 3. Consider the program in Fig. again. As shown in Example 2,
the describing clauses for arcs a, b and c are"

(1) Ca" Ql(Xl,xz, xl,x2),
(2) Cb.,..Ql(X1,x2,yl,y2) V Y2 0 k/ Ql(X1,x2,yl q- 1,y2 1),
(3) Cc’,Qt(x.,x2,y.,y2) V Y2 # 0 V QH(X,X2,Y).
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Since the program involves a loop, we have to use an induction axiom as
follows:

(::ly2)(y2 > 0& Ql(X1,X2,X1, y2))
&(y3)(y3 > O&QI(XI,X2,xI,y3)---QI(XI,X2,x1 + 1, y3- 1))

-, Q(x,x,xx + x2, 0).

The above axiom can be broken into three clauses, where f is a Skolem
function:

(4)
(5)

(6)

Y2 > 0 k ,Ql(X1,X2,Xl,y2) k/ f(y2) > 0 k/Ql(X1,X2,X1 + x2,0),
y2 2 0 k/ ,..Ql(X1,X2,Xl,y2) k Ql(X1,X2,Xl,f(y2))

V Ql(xt,xz,x +
Y2 > 0 V ,-Ql(Xl,Xz,xl,y2) V Ql(Xl,Xz,Xl + 1,f(y2)- 1)

k/ QI(X1,Xz,X "-I- X2, 0).

At is given as:

(7) x2 > 0.

Av is given as:

(8) 0 0,
(9) u> 0 V u=/=O.

(12)

From (1) through (9), we can generate the following resolvents

(4) & (7) Q 1(Xl, x2, x 1, x2) V f(x2) > 0 V Q 1(Xl, x2, x + x2,0),
(5)&(7) ,Ql(X1,Xz,X1,X2) k/ Ql(X1,Xz,xl,f(x2))

V Ql(X1,X2,X -Ji- x2, o),
(6)&(7) ,-Ql(X1,X2,X1,X2) v ,-.Ql(X1,X2,Xl + 1,f(x2)- 1)

k Ql(X1,X2,X1 + X2,

(13) (1)&(10) f(x2) > 0 V Ql(Xl,X2,Xl + x2,0),
(14) (1)&(11) QI(X1,X2,xI,f(x2)) V Ql(X1,x2,x1 + x2,0),
(15) (1)&(12) Ql(Xl,X2,Xl + 1, f(x2)- 1) V Ql(Xl,X2,X + x2,0),
(16) (2)&(14) f(x2)=O Q(x,x2, x + 1, f(x2)- 1)

V Ql(X1 ,x2,x + X2,0),
(17) (9)&(13) f(x2)- 0 V QI(X1,X2,X1 + X2,0),
(18) (16)&(17) QI(X1,X2,X1 + 1,f(x2)- 1) V QI(X1,X2,X1 -Jl- X2,0),
(19) (15)&(18) Ql(Xl,x2,x1 + x2, 0),
(20) (3)&(19) 0 4:0 V Qn(xl,x2,xl + x2),
(21) (8) &(20) Qtt(x1,x2,x1 + x2).

Clause (21) shows that the function of this program is to add two numbers X

and x2.
Now, we consider the specialization problem. Suppose a program P is

written for the input I and we are only interested in a restricted input I*. Of course,
program P still accepts I*. However, since I* is more restricted than I, we should
take this advantage and simplify P. That is, we should find a specialized version
P* of P so that P* can run faster on I*. In the following, we shall describe a
procedure to find such P*.

(10)
(11)
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THE SPECIALIZATION PROCEDURE.
Step 1. Suppose Ap and AF are defined as above. Let A’ be axioms specifying

the restricted input I*. Let S denote the set of clauses representing Ap & Ar & A.
Step 2. Using resolution, derive a halting clause Cn from S.
Step 3. Let D be the deduction of Ca.
Step 4. Let P* be the program obtained from P by deleting any arc whose

describing clause is not used in D, and by simplifying the remaining program.
P* is a specialization of P for I*.

Example 4.
Consider the program P shown in Fig. 2(a), where the input x is an integer

and D(x, y) means that y divides x. The program P is for any integer. Suppose we
now know that x is less than 10. Find a specialization of P for such input. For this
program P, Ap is given as follows:

C D(x, 7) V Q (x, x),
C2 D(x, 7) V Qn(x,a),

-D(x,7 D(x,7)

(2)

-D(v,9] D(y,9)

(3)

D(y,11)

(6)

FG. 2(a)
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-D(x,7) D(x,7)

D(y,9)

(3)

FG. 2(b)

-D(x,Z D(x,7)

(1)

4)
D(y,9)

(3)

FIG. 2(C)

(3)
(4)
(5)
(6)

C3 Q (x, y) V D(y, 9) V Q2(x, y),
C, ,-Q(x, y)V D(y, 9) V Qn(x,b),
C ..Q2(x, y) v D(y, 11) V Qn(x, c),
C6 "Q2(x, y) V ...D(y, 11) V Qi(x,d).

AF is given as

(7) x 10 V ,D(x, 11).
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A7 is given as

(8) x < 10.

Clause (7) means that if x < 10, then 11 does not divide x. From Ap & AF &
we obtain the following deduction D of a halting clause:

(9) (7) & (8)
(I0) (5) & (9)
(Ii) (3) & (4)
(12) (I0) & (11)
(1_3) (I) & (2)
(14) (12) & (13)

Clause (14) is a halting clause which indicates that the output can be either a, b
or c (never d). Since C6 is not used in this deduction, arc (6) can be deleted. We can
obtain P* shown in Fig. 2(b). Clearly, P* can be further simplified to the program
shown in Fig. 2(c).

Example 5. Consider Fig. 2(a) again. Suppose this time we know that if 9
divides x, then 11 does not divide x. Let us see how we can simplify the program.
The describing formulas from (1) to (6) are still the same.

A’ is given as

(7) D(x, 9) V D(x, 11).

We have the following deductions:

(8) (I) & (2)
(9) (8) & (3)
(10) (9) & (5)
(II) (I0) & (7)
(2) () & (4)
(13) (12) & (8)

Q I(X, X)/ QH(X,
D(x, 9) V Qz(x,x) V Qn(x, a),
D(x, 11) V D(x, 9) V QH(X, a) V Qn(x, c),
D(x, 9) V QH(X, a) V Qn(x, c),

Q(x,x) v QH(X,a) V Qn(x,b) V QH(X,C),
Qn(x, a) V Qn(x, b)V On(x, c).

Note that clause (6) is not used in the above deduction. Therefore arc (6) can
be deleted as shown in Fig. 2(b). This program can be further simplified to that
in Fig. 2(c).

The above example shows that this new approach can handle quite compli-
cated specification of the input, which is an improvement of the old approaches
[1], [2], [3].

4. Concluding remarks. The purpose of program specialization is the same
as that of compilation--to improve efficiency. In addition, it allows one to write a
general program so that it may be tailored to any specific user when he has a
specific input specification. We have shown that techniques used in theorem
proving can be applied to the specialization problem. Our approach is very general
because it is not limited to any particular language and any kind of input specifica-
tion can be used.
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At this stage, we have to admit that our techniques are not pragmatic because
the mechanical theorem-proving techniques are not efficient enough. But, as we
are witnessing progress being made in this field, we do believe that the founda-
tion for applicable results is being laid.
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EULERIAN WALKS IN GRAPHS*

S. GOODMAN AND S. HEDETNIEMI’

Abstract. The general problem of finding the shortest edge covering walks in an arbitrary un-
directed graph is investigated. An exact combinatoric expression is obtained for the length of such a
walk, and the graph theoretic properties of these walks are studied. Explicit solutions are exhibited
for some important classes of graphs.

Key words. Graph theory, Eulerian walks, Chinese postman’s problem.

A graph G is called Eulerian if it is possible to start at an arbitrary point u of
G, walk in some sequence along the lines of G and return to the starting point u
having traversed every line exactly once. In 1736 Euler, after whom such graphs
were named, showed that a graph G possesses such a traversal if and only if every
point of G is incident with an even number of lines, i.e., every point has even degree.

Most graphs however contain at least two points of odd degree and hence
are not Eulerian. In non-Eulerian graphs G, if one wanted to start at an arbitrary
point u, traverse all the lines of G and return to point u, one would have to traverse
some line, or lines, more than once. We shall call a walk which begins and ends
with the same point and contains every line, a closed covering walk of G. An
Eulerian walk in a graph G is a closed covering walk of G of minimum length.

The original formulation of this problem, due to Kwan Mei-ko [3] and known
as the Chinese postman’s problem, was as follows: "A mailman has to cover his
assigned route before returning to the post office. The problem is to find the shortest
walking distance for the mailman." More generally, the problem is of interest in
many situations where one has to periodically traverse or inspect every link in a
network; for example, in garbage collection, security patroling, and rail line in-
spection.

In [2] exact expressions were obtained for the length of an Eulerian walk in
graphs having 0 or 2 odd points, in trees, and in complete graphs. Weak upper and
lower bounds were also obtained for arbitrary graphs having 2n odd points. In
this paper we shall determine the exact length of an Eulerian walk in an arbitrary
graph G having 2n odd points. We shall characterize Eulerian walks in terms of
minimum sets of connecting paths between pairs of odd points in G. A rather
different development was given by Kwan Mei-ko [3] who characterized such
walks in terms of an interesting cycle property which they possess. We shall also
investigate some general properties of Eulerian walks and exhibit a number of
specific solutions for some important classes of graphs.

1. Definitions and terminology. A graph G (V, E) consists of a finite.,
nonempty set V of points and a set E of unordered pairs (u, v) of distinct points,
called lines. A graph G’ (V’, E’) is a subgraph of a graph G (V, E) if V’ c V and

* Received by the editors June 6, 1972, and in revised form December 26, 1972.

f Department of Applied Mathematics and Computer Science, University of Virginia, Charlottes-
ville, Virginia 22901.

Any terms not defined here can be found in Harary [1].
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E’ c E; G’ is afull subgraph of G if for every pair of points u, v V’, (u, v) E implies
(u, v) E’.

By our definition, a graph can contain at most one line (u, v) for a given pair
of distinct points u, v. A multigraph is a graph except that it may contain several
lines (u, v) for a given pair of distinct points u, v. The term "graph" will not be used
to denote multigraphs.

A walk of length n in a graph G (V, E) from point u to point u,+ is a
sequence of points W u,u2, ..., u,,u,+ and line set E such that for

1, 2, ..., n, (ui, ui+ a) E; the walk W is open or closed depending on whether
u - u,+ or u u,+, respectively. A path is an open walk in which all points
are distinct. A cycle is a closed walk u, u2, "", u,, u, n __> 3, in which the points
u, u2, ..., u, are all distinct. The distance d(u, v) between two points u, v in a
graph G is the length of any shortest path from u to v.

A walk W in a graph G is said to be spanning if it contains every point of G;
W is said to be covering if it contains every line of G. An Eulerian walk in a graph
G is a closed covering walk of minimum length.

A homomorphism of a graph G into (onto) a graph G’ is a function q from V
into (onto) V’ such that for every u, v V, (u, v) E implies (ub, vb) E’. If, in addi-

v’ E’tion, for every u, Vb, (u’, v’) implies there exist points u, v V such that
ub u’, vb v’ and (u, v) E, then q is said to be afull homomorphism. The image
of G under the homomorphism b is the graph Gq (Vb, Eb), where Vq
{ucklu V} and Eb {(ub, vq)l(u, v) E}. It follows from the definition that if q is
a homomorphism of G into G’, then Gb is a subgraph of G’, and if b is a full homo-
morphism, then Gq is a full subgraph of G’. If b is full and onto, then G4) G’.

Notice at this point that if G is a connected graph having q lines, then there
exists a full homomorphism b of the cycle of length 2q, Cz onto G, i.e., C2 G.
In general however, C2 is not the smallest cycle which has a full homomorphism
onto G. Let C u, u2, "., u, u be a smallest cycle which has a full homo-
morphism onto G, i.e., Ck(/) G. Then ultk,/,/2(]), "’’, L/k(]), Ul(]) is an Eulerian walk
’in G. Conversely, if v l, rE, ".., Vk, V is an Eulerian walk in G, then the homo-
morphism , defined by ui vi, maps the cycle Ck U a, U2, "", Uk, U onto G,
where Ck is the smallest cycle that maps onto G. Thus, Eulerian walks in graphs
correspond 1-1 with full homomorphisms of smallest cycles Ck onto G.

A point v is a cutpoint of a connected graph G if its removal results in a dis-
connected graph. A bridge is such a line. A nonseparable graph is connected,
nontrivial, and has no cutpoints. A maximal nonseparable subgraph is called a
block. A wheel, Wp, is a (p 1)-cycle each point of which is adjacent to a single
point not on the cycle.

2. The length of an Eulerian walk: Exact solution. We define the length of an
Eulerian walk in an arbitrary graph G as the Euler length of G and denote this by
e(G).

We shall now derive an exact equation for e(G) for any connected mph G.
If G is not connected the followin theory will apply to its components.

Let G be a connected gaph having q lines and 2, points of odd degree.
Denote the set of odd points of G by O(G) {u, u, ..., u:,}. Define a pair-
partiio of the odd points of G to be a partition u of O(G) into , pairs, say
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{{b/ll, /’/12}, {U21, //22},’’’, {Unl, Un2}}" Given a pair-partition rt, define the
sum

d(Tr,) d(blil, lgi2),
i=1

i.e., d(rc) is the sum ofthe distances d(Uil, ui2) between the pairs of points enumerated
in the pair-partition n.

If we denote the set of all pair-partitions of G by re(G), then we can define

re(G) rain d(n),

which is clearly a finite integer for any graph G. Let be a pair-partition that
actually gives the minimum d() re(G); then for each pair {U/l, t/i2 in , let Pi be
any path in G from ui to ui that is of minimum length d(uil ui2 ). We shall refer to
such a set of n paths {P1, P2, P,} as an m-set of G. Also, we let IPil denote the
length of Pi, i.e., [Pil d(Uil, ui2).

THEOREM 1. For any connected graph G having q lines and 2n points ofodd degree,

e(G) q + m(G).

Proof We first show that e(G) <= q + m(G), i.e., there exists a closed covering
walk in G of length q + re(G).

Let {P1, P2, "’", P,} be an m-set of G, for some pair-partition rc {{ul 1, u12},
{U21 U22}, {Unl Un2}} of G. Then

In, / [Pzl /"" / [P,I d(b111, b/12) -{- d(u21, u22) Av""-]- d(1Anl, Un2)--- re(G).

Let G’ be the multigraph which is obtained by adding to G all of the lines in
the m-set {P1, P2, "", P,}. Notice that while G contains 2n points of odd degree,
every point in the multigraph G’ has even degree. Therefore G’ is an Eulerian
multigraph having q + re(G) lines. Thus G’ has a closed covering walk W of length
q + m(G) which contains all the lines of G’ exactly once. This walk W in G’ is also
a closed covering walk in G. Thus any Eulerian walk in G will necessarily contain
no more lines than W, i.e., e(G) <= q + m(G).

We next show that e(G)>_ q + re(G). Assume that there exists a cycle
Ck ul, u2, ..., uk, ul of length k < q + re(G) and a full homomorphism q5 that
maps C onto G, Ck4 G.

Consider the multigraph G, which is defined by C and the homomorphism
i.e., V(G,) V(G), and there are as many lines between two points v, w in Gk as
there are pairs of adjacent points ui, uj in C such that uidp v and ujb w. It
follows therefore, since C, has k lines, that G has k lines. The degree of a point
v in Gk equals the sum of the degrees of the points u for which Ui( U. Since every
point b/i has even degree (i.e., degree 2) in C, every point v has even degree in Gk.

Let us now consider the graph G G obtained by deleting the q lines of G
from G. Since G has 2n points of odd degree, it follows that the same 2n points
have odd degree in G G, and in fact these are the only points of odd degree
in G- G.

Thus by the classical theorem of Euler (cf. Harary [1, p. 64]), there exist n line
disjoint walks that contain all the lines of Gk G. These n walks connect the 2n
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odd points of Gk G in pairs, and hence define a pair-partition r of G, for which

d(n) number of lines in Gk G k q.

By definition however, d(r0 >= m(G)" thus k q _>_ m(G), i.e.,

k >= q + m(G),

which contradicts our assumption that k < q + m(G). Thus there does not exist
a cycle of length less that q + m(G) which has a homomorphism onto G. Thus
e(G) >= q + re(G).

Thus since we have shown e(G) <= q + re(G) and e(G) >= q + m(G), we
conclude that e(G) q + re(G).

COROLLARY la. If a connected graph G is Eulerian, i.e., has no points of odd
degree, and has q lines, then

e(G) q.

This is Euler’s classic result.
COROLLARY lb. If G is a connected graph having q lines and exactly 2 points

u, v of odd degree, then

e(G) q + d(u, v).

Pro@ The result follows from the fact that O(G) has only one possible pair-
partition in this case.

These last two corollaries appear in [2].
For graphs with more than 2 odd points it becomes increasingly difficult to

find m-sets because of combinatorial complications. In the remainder of this
paper we shall go into some of these difficulties in detail and investigate some
general properties of these m-sets.

A completely different characterization of Eulerian walks in graphs was given
in 1962 by Kwan Mei-ko [3]. In order to contrast his result with ours, let us first
restate Theorem 1.

COROLLARY lC. A closed covering walk W in a graph G is an Eulerian walk if
and only if the set of lines appearing more than once in Wforms an m-set of G.

We next restate Mei-ko’s theorem in the form and language of Corollary c.
TI-IEOREM 2 (Mei-ko). A closed covering walk W in a graph G is an Eulerian walk

if and only if(i) no line of G appears more than twice in W, and (ii) for any cycle C
ofG the number oflines ofC which appear twice in W does not exceed halfthe length
of C.

Theorem 2 and an algorithm derived from it are essentially the content of [3].
Condition (ii) of this theorem is particularly interesting. It is not obvious that the
conditions in Corollary c and Theorem 2 are equivalent. This equivalence can be
seen from the following schematic:

m-sets Eulerian walks (i) and (ii) in Theorem 2.

3. The length of an Eulerian walk: Specific solutions. A factor of a graph G
is a spanning subgraph of G which is not trivial. A 1-factor is regular of degree 1.
A graph with 2n odd points is said to have a 1-factor on its odd points if the subgraph
induced by its set of odd points has a 1-factor.
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LEMMA 3. For any graph G with 2n odd points, m(G) >__ n.
Prooj We have established that an m-set consists of n paths connecting the

2n odd vertices in pairs such that the sum of their lengths is minimum. Clearly
no set of n nonzero paths which begin and end on n distinct pairs ofpoints can have
a combined length less than n.

THEOREM 3. If G has a 1-factor on its odd points, then m(G) n.

Proof If G has a 1-factor on its odd points, it is possible to connect the 2n odd
points in pairs by n lines, thus equaling the lower bound in Lemma 2.

COROLLARY 3a. If G is a graph in any one ofthefollowing classes and G has 2n
odd points, then m(G) n:

(i) the complete graphs, K2,,
(ii) bridgeless cubic graphs,

(iii) graphs that are both s-regular and s-connected,
(iv) the wheels,
Proof. All the graphs in the above classes can be shown to have a 1-factor on

their odd points.
The following theorem is easily demonstrated.
THEOREM 4. (a) For the complete bipartite graphs G K21o+ 1,2n, where p and

n are any positive integers,

m(G) 2n.

(b) For the complete bipartite graphs G K,,, where p and p’ are odd integers
with p >= p’,

m(G) p.

4. Properties of Eulerian walks in graphs. Theorem provides an exact
equation for the length of an Eulerian walk in an arbitrary connected graph G.
However, it does not provide, except for trying all possibilities, an efficient al-
gorithm for actually finding such walks. The next several results reveal some
properties of Eulerian walks in graphs which are useful in finding such walks.

The next theorem will be recognized as equivalent to the first condition in
Theorem 2. The proof given below is different from that described in [3].

THEOREM 5. Let W be an Eulerian walk in a graph G. Then no line of G appears
more than twice in W.

Proof. Suppose I4/contains a line uv which occurs three times. Consider how
this line occurs in W; there are essentially three possibilities"

(i) I4/= AuvBuvCuvD, where A, B, C, and D are sequences of points of G
which may or may not contain other occurrences of the line (u, v); if W has this
form then W’ AuvCuBvD would be a closed walk containing all the lines of G,
having two fewer lines than l/V, which would contradict the minimality of I4/

(B is the reverse of B);
(ii) W AuvBuvCvuD;if W has this form then W’ AuvCvBuD would be

a closed walk containing all the lines of G having fewer lines than W, another
contradiction;

(iii) I4/= AuvBvuCuvD;if I4/has this form then W’ AuCuvBvD would be
a closed walk containing all the lines of G, having two fewer lines than W, another
contradiction.
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Thus in all cases, the supposition that there exists a line which occurs more
than twice in W leads to the existence of a closed walk containing all the lines of G,
having fewer lines than l/V, which contradicts the minimality of W. Therefore no
line can appear more than twice in any Eulerian walk in a graph G.

COROLLARY 5a. Let {P1, P2,’", P,} be an arbitrary m-set of a graph G.
Then no line ofG appears twice in {Px, P2, "’", P,}, i.e., the set ofpaths in any m-set

of a graph G are line-disjoint.
Prooj’. An Eulerian walk in a graph G can be obtained by adding the lines in an

m-set to G to form an Eulerian multigraph. If a line appeared twice in an m-set, it
would appear three times in the corresponding Eulerian walk; this would contra-
dict Theorem 5.

The next two results are designed to assist in finding m-sets of a graph G. They
show that in order to find an m-set for G it suffices to find m-sets for certain smaller
subgraphs of G.

THEOREM 6 (Cutpoint theorem). Let G be a connected graph having blocks
Ba, B2,... Bk. Then the union of the lines in m-sets for each of the blocks B forms
an m-setjbr G, and conversely, the lines in any m-set oj’Gjbrm m-setsjbr each of the
blocks Bi.

Proof Let G have q lines and let the blocks B have q lines;
q q + q2 + + qk" Let P be an m-set of B having re(Be) m lines.

We first claim that P1 U P2 U... 12 Pk is an m-set of G, i.e., re(G) m
+ mE +’..-1- mk and G U P U P2 U... U Pk Gk is an Eulerian multigraph.
It is obvious that Gk is an Eulerian multigraph since

Gk (B, U P,) U (B2 U P2) U... U (Bk U Pk)

and each Bi U Pi is an Eulerian multigraph.
Suppose however that re(G)< m + m2 +’’" + ink. Let C be a smallest

cycle which has a full homomorphism 4) onto G, i.e., re(G) q < ml + m2
+’’’+ink. Then, by definition, the multigraph G, formed as in the proof of
Theorem 1 by Cl, dp and G, is Eulerian. Since G B U B2 U U Bk, it follows
that

Gt Bit U B2l U U Bkl,

where each multigraph B is a block of Gt. We claim that each of the multigraphs
B is Eulerian. Since C and the homomorphism b define a closed covering walk
in G, every time this walk passes through a cutpoint v of G and enters a particular
block B, it must sooner or later leave the same block B through the same cutpoint
v. Thus the degree of any cutpoint v in any block Bi of G must be even. Further-
more, since the degree of any non-cutpoint u in a block B is the same as its degree
in G, and since every point has even degree in G, every non-cutpoint u has even
degree in B. Thus every point ofB has even degree, hence B is Eulerian.

Let the multigraphs Bit have q lines. Then the number of lines in G is

q + m(G) q xt + q2l + + qkl"

Furthermore since we are assuming that

m(G) I- q < mx + m2 +’’"-t- mk,
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we have that

q (qxt qx) + (q).t q2) + + (qk- qk) < ml + m2 + + ink.

But this implies that for at least one j,

q- q<m,
which contradicts the minimality of the m-set Pj of block Bj.

Thus there cannot exist a cycle Ct with a full homomorphism onto G, with
l- q < m + m2 +"" + mk. Thus the m-sets Pi form an m-set for G.

Conversely, let P denote the set of lines in an arbitrary m-set of G. We must
show that the lines in P form m-sets for each of the blocks Bi of G.

Certainly, P= {P fflB} U {P f’lB2} U... U {P fflB}.
Certainly also, Bi U {P ffl Bi} is an Eulerian multigraph for 1 __< __< k.

This follows by exactly the same argument used above to show that the multigraphs
Bu are Eulerian.

Suppose however that {P ffl Bi} is not an m-set of Bi; let S be an m-set of Bi.
Then P’-- P {P El Bi} U S is a set of lines such that G U P’ is an Eulerian
multigraph. Furthermore, since S has fewer lines than {P f’l Bi}, it follows that P’
has fewer lines than P; this contradicts the minimality of P. Thus {P ffl Bi} must
be an m-set for all i, 1 __< _< k.

COROLLARY 6a. Every bridge uv of a graph G appears in every m-set of G.
COROLLARY 6b. If T is a tree having q lines, then re(T) q.
This corollary for trees was proved somewhat exhaustively in [2]; here it is

an immediate consequence of Theorem 6.
Theorem 6 asserts that in order to find an m-set for a connected graph G all

one has to do is to find and put together m-sets for each of the blocks of G. The next
theorem provides a technique which simplifies the problem of finding m-sets for
the blocks of G.

Let G be a 2-connected graph having two points u, v such that G {u, v} is
disconnected. Let G"I, G, ..., G, be the connected components of G- {u, v},
and let Gi G’i + {u, v} be the graph obtained by adding points u, v to G’i together
with all lines of G joining a point of GI and either u or v; we shall refer to
G, G2, "., G as the components of G joined together at u and v. Notice that if
points u and v are adjacent in G, then one of the subgraphs Gi will consist of just
the two points u, v and the line (u, v); in this case no other subgraph will contain
the line (u, v) (cf. Fig. 1).

Let C be a cycle of length e(G) q + re(G); let 4) be a full homomorphism
of C onto G; let Gl be the multigraph defined by C, b, and G; and let
Gl Gzl, ".., Gkl be the multigraphs which are the components of G joined
together at u and v.

Consider whether or not an arbitrary Gig is an Eulerian multigraph. Since the
degree of every point in Gt is even, the degree of every point except possibly u and
v is even in Gi. If the degree of both u and v is even in Gi, then G, is an Eulerian
multigraph.

If the degree of both u and v is odd, then G, has a walk which begins at point u,
contains every line of Gi exactly once and ends at point v; let us call Gu in this case
nearly-Eulerian with respect to u and v.
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The remaining case, in which one of u or v has odd degree, and the other,
even degree in Gil is not possible, since any multigraph must have an even number
of points of odd degree.

Thus every multigraph Gil is either Eulerian or nearly-Eulerian. Observe next
that the number of nearly-Eulerian subgraphs Gl must be even. This follows since
the degree of u (and v) in G is even and the degree of u (and v) in G equals the sum
of the degrees of u (and v) in the subgraphs G,. Thus there are an even number of
subgraphs in which the degree of u is odd, i.e., an even number of nearly-Eulerian
subgraphs with respect to u and v.

In what follows let l denote the fewest number of multilines needed to be
added to G in order that the resulting multigraph is nearly-Eulerian with respect
to u and v, and let mi m(G).

THEOREM 7. Let G be a 2-connected graph having q lines and a cutset of two
points u and v let G1, G2, Gk be the components ofG joined together at u and v.
Then

m(G) min ni,
i=1

such thatfor 1 <_ <= k, n e {4, mi} and the number of li appearing in the summation
ng is even.

Proof. We first establish that re(G) <= min hi. Let nl + n2 +"" + n n
be a minimum sum such that an even number (possibly 0) of the nj’s are l’s. For
each j, let us add a corresponding set of n multilines to the subgraph G.i to form
the multigraph, say Gj,, which is either Eulerian (if nj mj) or nearly-Eulerian
with respect to u and v (if n l). But since an even number of n’s are lj’s, an even
number ofthe subgraphs Gj, are nearly-Eulerian. Thus G, G1, U G2, U... U G,
is an Eulerian multigraph having q + n lines, i.e., re(G) <= n.
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Conversely we must show that m(G) >_ min ni. Suppose m(G) < min ni.

Let e(G) q + re(G) and let C be a smallest cycle having a full homomorphism
onto G. As in the proof of Theorem 1, let G be the multigraph defined by CI,

tk and G; also let Gig G2/, Gk be the induced multigraphs corresponding to
the components G1, G2, "", Gk which are joined together at u and v.

As we observed earlier these multigraphs Gj are either Eulerian or nearly-
Eulerian with respect to u and v, and furthermore an even number of these multi-
graphs are nearly-Eulerian.

Let the subgraphs Gi have q lines and the multigraphs Gt have q lines.
Thenq=ql+q2 +’"+qkand

q + m(G) qll -1- q2 + + qkl"

Let Ni qiz qi. Then N1 + N2 + + Nk m(G).
All that remains to show now is that either N l or Ni m, for having

done this we will have the contradiction

k

N1 + N2 +"" + Nk < min ni,
i=1

where each ni {li, mi} and an even number of the ni’s are li’s.
Assume that Gi is Eulerian. Then by definition, Ni >= m(G). But if Ng > m(G),

then we could add strictly fewer multilines to G to make an Eulerian multigraph,
say Gim. This multigraph plus all the remaining multigraphs Gjt would then form
an Eulerian multigraph having strictly fewer lines than GI, contradicting the
minimality of CI. Thus N m(Gi), i.e., if Gil is Eulerian, then N m(Gi) m.

Assume finally that Gig is nearly-Eulerian with respect to u and v. The same
kind ofargument can be used to show that N l, for ifN > l, we can form a new
nearly-Eulerian multigraph Gim having q + l < q + N lines which when com-
bined with the remaining multigraphs Gj would form an Eulerian multigraph
having strictly fewer lines than Gt, again a contradiction to the minimality of GI.

Thus
k

N1 + N2 +"" + Nk min n,
i=1

which completes the proof.
We next present an example which illustrates the applicability of Theorem 7.

The graph G in Fig. 2 has eight odd points. In order to find an m-set for G we note
that G has two points u and v such that G {u, v} is disconnected. The components
of G joined together at u and v are labeled G1, G2, G3 and G4. For each of these
subgraphs of G we compute, by inspection, It and m. Recall that l is the least
number of multilines we need to add to G in order to produce a nearly-Eulerian
multigraph with respect to u and v, i.e., in order to produce a multigraph in which
u and v are the only two points of odd degree. Recall also that m is the fewest
number of additional multilines we need to add to G in order to produce a multi-
graph in which every point has even degree.

Having computed l and m, for 1, 2, 3, 4, we then find the minimum sum
ni, as indicated in Fig. 2, such that there is an even number of n’s and l’s.

Having selected, say m, m2, 13 and 14, we then add the ml lines to G1 which make
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U

V

U

U

G Gz G G4

ez-o e -2 e4-4
m2= m=3 m4=,.5

4
min T. n m +m2 +s+ ’4 = 9

i=l
= m +,2+m3+,4 = 9

FIG. 2

G1 Eulerian (Glt), the m2 lines to G2 which make G2 Eulerian (G2/), the 3 lines
to G3 which make G3 nearly-Eulerian (Ga/), and the 14 lines to G, which make G4
nearly-Eulerian (G,u). We then form Gt 13 GEl U Gat U G4l and obtain the
Eulerian multigraph G of Fig. 3. Thus we see that for the graph G of Fig. 2,
m(G) 9, q 41 ande(G)=q+m(G)- 50.

5. Extensions of the general theory. We first comment that it seems possible
that one can extend the cutpoint theorem and the 2-connected theorem to a 3- or
even n-connected theorem. The only conceptual problem would seem to be the
large number of different kinds of components that would need to be considered
and the subsequent complexities of the minimum sums over these components.
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GI_ G2, G3Z
FIG. 3

We next suggest that a very natural next step to this work is to consider the
problem ofdetermining the minimum length ofa cycle which has a homomorphism
(not necessarily full) onto a given graph G. In other words, what is the length of a
shortest closed walk which contains every point of a graph G? In intuitive terms
this consideration is equivalent to asking the question: if a given graph is not
Hamiltonian, then how close to being Hamiltonian is it? By studying nearly-
Hamiltonian graphs one might expect to shed some light on the general Hamiltonian
problem.

We close with a brief discussion of algorithmic procedures for finding Eulerian
walks in an arbitrary graph. Mei-ko [3] has developed a very simple algorithm
which works well for small graphs with few cycles, but which is not very feasible
for large graphs or computer implementation. The problem can also be approached
by recognizing that its basic combinatorial aspects are equivalent to finding a
minimum weighted matching on Kzn. Each of the 2n points represents one of the
odd points in the original graph G, and the lines are weighted with the correspond-
ing distances from G. Edmonds [4] has developed a very sophisticated algorithm
for handling weighted matching problems. We have constructed a simple branch
and bound procedure which is very computer implementable and appears to be
efficient for problems up to at least 20 odd points [5].



EULERIAN WALKS IN GRAPHS 27

REFERENCES

[1] F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[2] S. HEDETNIEMI, On minimum walks in graphs, Naval Res. Logist. Quart., 15 (1968), pp. 453-458.
[3] K. MEI-KO, Graphic programming using odd or even points, Chinese Math., (1962), pp. 273-277.
[4] J. EDMONDS, Maximum matching and a polyhedron with O,l-vertices, J. Res. Nat. Bur. Standards,

69B (1965), pp. 125-130.
[5] S. MITCHELL, S. HEDETNIEMI AND S. GOODMAN, 4 branch and bound algorithm for weighted

matchings, DAMACS Tech. Rep. 4-73, University of Virginia, Charlottesville, 1973.



SIAM J. CoMr’ua’.
Vol. 2, No. 1, March 1973

A NEW ALGORITHM FOR FINDING ALL SHORTEST PATHS
IN A GRAPH OF POSITIVE ARCS IN AVERAGE TIME O(n2 log2 n)*

P. M. SPIRAl"

Abstract. We present a new algorithm for finding the shortest path between each pair of nodes
in a directed nonnegatively weighted graph. Our algorithm has average running time O(n log n)
where the graph has n nodes in contrast to previous algorithms in the literature, all of whose average
running times are O(r/3) for this problem.

Key words. Shortest paths, algorithm, directed weighted graphs.

1. Introduction. The problem of finding shortest paths in directed weighted
graphs has been investigated by many authors. An excellent summary of the
history of this problem is given by Dreyfus [1. In this paper we consider the prob-
lem of finding all shortest paths in such a graph under the restriction that all
weights are nonnegative real numbers. Prior methods used in this problem.
such as that of Dijkstra [2] or that of Floyd [3J--have running time which is
O(n3) to find the paths. We give a new algorithm in this paper and show that if
the arcs are independent identically distributed random variables from any
distribution whatsoever then the expected running time of our algorithm is
O(n2 log2 n). Also the standard deviation is at most O(n2 log n).

2. Preliminaries to the result. Before proceeding to our algorithm we give
several preliminaries and review certain well-known facts about sorting. Let
{x ..., x,} be a set of real numbers. We wish to produce an ordered list of them,
sequentially identifying the minimum element in the set, the second minimum and
so on. Then it is well known that [3] the minimum can be produced in n-
comparisons and each successive element in the ordered sequence can be produced
in [log2 n] additional comparisons. In order to review how this is done and for
future use in the algorithm we have the following definition.

DEFINITION 2.1. A played binary tree is a binary tree some of whose terminal
nodes are labeled with real numbers and some of whose terminal nodes are blank.
In addition, if either or both successor nodes of a given node is labeled, then the
given node is labeled with the smallest value of those on the successor nodes.

We give an example in Fig. 1. It easily follows that the value at the root of
such a tree is the minimum value in the tree.

THEOREM 2.2. There is an algorithm to extract the k smallest ofa set x ..,
of n real numbers in n + (k 1) [log2 n] comparisons.

Proof We start with a complete binary tree with 2IIg2nl leaves. Such a tree
has depth [log2 n q. At the first n leaves place x ..., x, respectively. Play the tree
extracting the minimum in n- comparisons. To get each successive element

Received by the editors September 5, 1972.- Department of Electrical Engineering and Computer Sciences and the Electronics Research
Laboratory, University of California, Berkeley, California 94720. This work was supported by the
Joint Services Electronics Program under Contract F44620-71-C0087 and by the U.S. Army Research
Office--Durham under Grant DA-ARO-D-31-124-71-G174.
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4 572 6

FIG. 1. A played binary tree

desired merely erase the path taken by the previous winner and fill in the tree
once more. This completes the proof.

We note that one can sort the entire set this way in an asymptotically optimal
number of comparisons. We shall use a slight variant of the above result.

THEOREM 2.3. Let {Si} be afamily of sets of real numbers such that
(i) S is a singleton,
(ii) S is obtainedfrom Si_ by deleting the minimum element in Si_ and adding

either one or two new elements.
Then there is an algorithm which successively finds the minimum element of
S 1, $2, ..., S in at most 2k[log2 n] comparisons provided that [Ski =< n.

Proof The reader can easily supply the variation of the algorithm in the
preceding theorem.

We do not claim that the preceding results are new. In fact they are most
likely classified as well-established folklore. But they are given here for convenience
and to warm up the reader for what follows.

3. The algorithm. Let G be a directed nonnegatively weighted graph. We
wish to find for all pairs (i, j), =< - j <__ n, the shortest path from to j. We shall
give a new algorithm which is easily understood provided that one is familiar
with Dijkstra’s algorithm for finding the shortest paths to j, __< j - =< n, for
a fixed/(see [2]).

We make the following simple observation about Dijkstra’s algorithm.
LEMMA 3.1. Assume that the shortest pathsfrom node to nodes il, ..., i have

been found by Dijkstra’s algorithm. Then the next node to be labeled will be the
closest unlabeled node to one of the already labeled nodes or to node 1.

Proof Trivial.
This suggests the possibility of sorting the arcs before proceeding with the

labeling. In the one origin case this does not pay since sorting is an O(n2 log n)
operation for a complete n node graph. However, if we want all n(n 1) shortest
paths in the graph, it is possible to improve the existing O(n3) algorithms by first
sorting the arcs in certain cases. This is what we have done.

The idea of the algorithm is simple. We first sort the arcs into n lists, one for
the arcs emanating from each of the nodes. This is O(n2 log n). We then choose
an origin, say node 1. Then we label the closest node to node 1. Say it’s node 2.
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We then add the distance to node 2 to the length of the shortest arc from node 2
and compare that to the length of the shortest remaining node from node 1. We
can permanently label the node indicated by this comparison unless it happens
that the arc from node 2 to node 1 wins this contest. If it does we run another
contest between the shortest remaining arc from 1 and the sum of the distance to
node 2 plus the shortest remaining arc from node 2 now that the arc to node 1
has been bypassed.

Assume we have found the shortest paths to k- 1 nodes. With no loss of
generality say they are nodes 2, 3, ..., k and have shortest path lengths O2, Dk

respectively. Note that also D ll --0. Assume that the shortest remaining arc
from node is dim for =< __< k. Then we find

min {Dli + di,,,’l < k};

say the minimum is D1j + dj,,. We then label node mj if it has not already been
labeled. If mj is labeled we take the next arc on the sorted list of arcs from node j,
say it’s djm,, add D + djm,, and minimize the set obtained from the previous
set by replacing Dj + dm by this new value. If m is unlabeled we label it getting

Dm. Dj -+- djm,. We then compute DU -k- dim, and Dim -+- din.is where we have
assumed that d,, is the minimum arc on the list of arcs from node mj. Next we
minimize the new set obtained by deleting Dj + dm from the previous set and
adding these two new values to the set. By proper organization of the elements
we are minimizing, Theorem 2.3 tells us that we can identify successive minima in
at most 2[log2 n] comparisons.

We run the tournaments necessary to obtain all shortest paths from node 1
and then proceed in the same way with nodes 2, 3, ..., n as the origin. If the total
number of tournaments is small compared to n3/log n we shall have an improve-
ment over existing algorithms. In the next section we discuss this.

We now give a formal description of the algorithm. Let G (g’, ) be a
directed graph where V" {(!), (2), ..., (g)} is the set of nodes and
1 <_ __< n, 1 _<_ j :/: _<_ n} is the set of nonnegative arc lengths where dq is the
distance from node to node j. By convention dij oe if no such arc exists. When
the algorithm terminates Dij will be the length of the shortest path from to j for
all n2 values of(i,j) with <_ <= n, <= j <= n. Du will be zero for 1 =< =< n.

To help the reader understand what follows note that I(i,j) will be the index
of the node on which the jth shortest arc from node terminates, LABEL (i, j)
will be an indicator of whether we have found Dj, p will be a pointer to the first
unused arc in the ordered list of arcs starting at node i, will be the current origin,
and S will be the set of paths from which we extract minima by use of the procedure
of Theorem 2.3.

The algorithm proceeds as follows"
1. Sort in increasing order the n sets of arcs

{dij’l-<_j4: i_< n} fori= 1,2,...,n.

Set I(i, j) where die is the jth element in the sorted set of arcs begin-
ning at node for all

<=i<=n,l <=j:/:i<=n.
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3.
4.

5.

10.
11.
12.
13.

Set
Set
Set
Set
Set
Set
Set
Set

Dii 0 for =< =< n.
LABEL (i, j) .-- NO for < __< n, =< j - __< n.
LABEL. (i, i) YES for =< =< n. Set ,--- 1.
S,-- . Set Pi for 1 <__ n. Set COUNT ,-- 1. Set k,- i.
Sk -- Dik + dkttk, COUNT),
PkPk+ 1. Set SSU {Sk}.
*- t’ where st, min {sj’sje S}.

Pt Pt + 1. (Use algorithm of Theorem 2.3 to find t.)
If Pt-- n + 1 go to 8.
Replace value of s
If LABEL (i, I(i, Pt 1)) YES go to 5.
Set LABEL (i, I(i, p, 1)) ,- YES.
Set Dim,pt_ 1) *--
Set COUNT ,-- COUNT + 1.
If COUNT =< n go to 4.
Set/,- + 1.
If =< n go to 3.
Stop.

4. Analysis of the algorithm. We now analyze the complexity ofour algorithm
as a function of the number of nodes in the graph. We note that the actual order-
ing of the arcs will effect the running time of the algorithm and so consider average
complexity where the arcs are identically distributed nonnegative random
variables.

THEOREM 4.1. Let p be any probability density function of a real variable x
such that p(x)= 0 for x < O. Let M.(G) be the number of steps required by the
algorithm to find the shortest path between all pairs of points in an n node graph G
whose arcs are independent random variables chosenfrom p. Then averaged over all
such G,

n <= O(n2 log2 n)

and the standard deviation of M,, is at most O(112 log n)for any such p whatsoever.
Proof We consider the number of times step 5 must be executed. It is easy

to see that this step is dominant. Let Nij be the number of times step 5 is executed
when node is the origin node and the first j 1 shortest paths have been found. In
each of the sorted lists of arcs a certain set has already been used. For the rest of
the arcs their sinks are the n -j unlabeled nodes of G plus perhaps some of the
already labeled nodes. The order of the relative distances to these nodes is com-
pletely independent of the order of relative distances to nodes which are the sinks
of arcs which have already been used. Furthermore all possible orderings of the
remaining arcs are equally likely. This follows from the fact that G was constructed
by independent trials from the probability density function p. Thus the probability
that a new node will be labeled is at least (n -j)/n no matter what list the last arc
in the next path to win a tournament is drawn from. It follows that

n-j n
Ni

< i(j/n)i-1
11 i=1 /’/ -J"
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But this occurs for n origins and j 1, 2,..., n 1. Hence since each execution
of step 5 is O(log n) there is a constant C such that for any n,

n-1, <= Cn log n O(n2 log2 n).
j=l/7 -j

Now note that Nij is a process whose statistics depend only upon the number of
arcs which lead to unlabeled nodes which are left after the first j shortest paths
have been found. Also

2n2

var (Ni) < 2N2.. <
n j i2(j/n)i_ <

’J n i=l (n j)2-

Thus if the total number of executions of step 5 from origin is N, we have

< 3n2var (N,) <. n2

(n -j)2

Now note that N and Nj are not, in general, independent for 4: j. Nevertheless
if N is the total number of executions of step 5 from all origins, we have

var(N) __< N nN21 + n(n 1)NN2 __< n2NZ <= 3n4,

proving the theorem.
We can, as usual, combine our algorithm with an O(n) algorithm to hedge

against our worst case of O(n log n) operations. Since by Chebyshev’s inequality
[4, p. 219] the probability that our algorithm runs for more than k standard
deviations beyond its mean value is at most 1/k2, we can choose k small and run
a standard O(n) algorithm if our algorithm is not done in k + standard devia-
tions. For example, if we choose k x/ the mean will be O(n2 log2 n) and the
worst case will still be O(n3).

Acknowledgment. The author gratefully acknowledges one of the referees for
pointing out the need for greater exposition in the proof of Theorem 4.1 than the
cursory treatment of an earlier version.
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BINARY SEARCH TREES OF BOUNDED BALANCE*

J. NIEVERGELT AND E. M. REINGOLD"

Abstract. A new class of binary search trees, called trees of bounded balance, is introduced. These
trees are easy to maintain in their form despite insertions and deletions of nodes, and the search time
is only moderately longer than in completely balanced trees. Trees of bounded balance differ from other
classes of binary search trees in that they contain a parameter which can be varied so the compromise
between short search time and infrequent restructuring can be chosen arbitrarily.

Key words. Balanced trees, lexicographic trees, binary search trees, table look-up.

Introduction. Binary search trees are an important technique for organizing
large files because they are efficient for both random and sequential access of
records in a file. Two main problems have received attention in the recent literature,
each concerned with the search time in such trees.

The first has to do with trees on a fixed set of names (or keys) and associated
probabilities. Knuth (1971) and Hu and Tucker (1971) have given algorithms for
constructing optimal trees; see Knuth (1973). Bruno and Coffman (1972), and
Walker and Gotlieb (1972) have given fast algorithms for constructing near-optimal
trees. Nievergelt and Wong (1972) have shown that asymptotically, both optimal
and balanced trees have the same average search time.

The second problem, which we consider to be of greater practical importance
because of its more realistic assumptions, has to do with trees over a set of names
which is dynamic, one which changes in time through insertions and deletions.
Hibbard (1962) determined how the average search time behaves if trees are left
to grow at random. To improve the search time over that of trees which have
grown at random, one looks for trees which satisfy three conflicting requirements:
they must be close to being balanced, so that the search time is short; one must
be able to restructure them easily when they have become too unbalanced; and
this restructuring should be required only rarely. Adel’son-Vel’skii and Landis
(1962) (see also Foster (1965) and Knuth (1973)) described a class of trees, now
known as AVL trees or height-balanced trees, which strike an elegant compromise
between these conflicting requirements.

This paper is intended as a contribution to the second topic. A new class of
binary search trees, called trees of bounded balance, or BB trees for short, is
described. BB trees share with the height-balanced trees of Adel’son-Vel’skii and
Landis (1962) the property that they are easy to maintain in their form despite
insertions and deletions of nodes, and that search time is only moderately longer
than in balanced trees. They differ from height-balanced trees in one important
respect They contain a parameter which can be varied so the compromise between
short search time and frequency of restructuring can be chosen arbitrarily.

Received by the editors July 5, 1972, and in revised form January 19, 1973.
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Trees of bounded balance.
DEFINITION. The empty tree, To, of zero nodes is a binary tree. A binary tree

T of n => nodes is an ordered triple (Te, v, T,), where Te, T are binary trees of ’, r
nodes respectively, f >_ 0, r => 0, + r n 1, and v is a single node called the
root of Tn.

DEFINITION. The height of a binary tree Tn of n >_ 1 nodes is zero if n 1,
otherwise it is given by max (height of Te, height of Tr) + 1.

DEFINITION. The internal path length lTl of a binary tree Tn is zero if n =< 1,
otherwise it is given by ITI TI / T, / n 1.

DEFINITION. The root-balance p(T) of a binary tree T (Te, v, T,) of n >=
nodes is p(T) ( + 1)/(n + 1).

DEFINITION. A binary tree T, is said to be of bounded balance , or in the set
BB[], for0 _< g _< 1/2, ifand only if either n _< 1 or, for n > 1 and Tn (Te, v, T,),
the following hold"

1. <_ P(Tn) =< 1 a, and
2. both Te and T are of bounded balance a.
The notion of root-balance is taken, with slight modification, from Niever-

gelt and Wong (1973). It is always in the range 0 < P(Tn) < 1, and it indicates the
relative number of nodes in the left and right subtrees of T,. Thus the completely
balanced trees Tn of n 2k 1 nodes are in BB[1/2], while the Fibonacci trees
defined by

Fo empty, F , Fi+ 2 I
/ \

f f,+
can be shown to be in BB[1/3].

It is interesting to note that there is a "gap" in the balance of trees.
THEOREM 1. For all in the range 1/3 < < 1/2, BB[0] BB[1/2].
Proof. If T is not completely balanced, i.e., not in BB[1/2], consider a minimal

subtree T’ of T which is not in BB[1/2]. T’ must be of the form (Te, v, T), where
both Te and T are in BB[1/2], i.e., 2 1 and r 2 1, but s - (say s < t).
Then

p(T’)
1 4- 2t-s <= 1/3,

which puts T in BB[] for some _< 1/3.

Search time in BB trees. The height of T, is a measure of the worst case time
required to search T,. Since the internal path length T, can be expressed as the
sum, over all nodes, of the length of the (unique) path from the root of T, to each
node, it is clear that Tnl/n is a measure of the average time required to search T,.

The following theorem is due to Nievergelt and Wong (1973).
THEOREM 2. If T is in BB[], then

1
[Tl =< -h-7-(n + 1) log (n + 1) 2n,

where
H(ct) log (1 or) log (1 ).

Throughout this paper, all logarithms are taken base 2.
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It is not difficult to show the following theorem.
THEOR.M 3. If T, is in BB[], then the height of T, is at most

log(n+ 1)- 1
log (1/(1 ))"

Proof The proof is by induction on n.
The bounds in both of these theorems are sharp for any tree all of whose

subtrees have root-balance e. Since the root-balance of a terminal node is 1/2,
the only trees with this property are the completely balanced trees of n 2k 1
nodes. It is clear, however, that for trees all of whose root-balances are close to e,
these bounds are reasonably tight.

These theorems provide bounds on average and worst case search times for
trees in BB[], for any . For example, trees in BB[1/3] look "sparse," but their
internal path length is at most 9 longer than it is for completely balanced trees
with the same number of nodes; this follows immediately from Theorem 2 since
1/H(1/3) 1.09. Hence, searching a tree in BB[1/3] will take, on the average, at
most 9 longer than searching a completely balanced tree with the same number
of nodes. Similarly, it follows from Theorem 3 that searching a tree in BB[1/3] will
take, in the worst case, at most 70 longer.

Rebalancing BB trees. If upon the addition or deletion of a node to a tree in
BB[] the tree becomes unbalanced relative to , that is, some subtree of T, has
root-balance outside the range [, ], then that subtree can be rebalanced by
certain tree transformations which are oftwo types (ignoring symmetrical variants),
shown in Fig. 1. In Fig. we have used squares to represent nodes, and triangles
to represent subtrees; the root-balance is given beside each node.

7B1

Rotation

Double
Rotation

FIG.
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THEOREM 4./f _<_ 1 x///2 and the insertion or deletion of a node in a tree
in BB[] causes a subtree T of that tree to have root-balance less than , T can be
rebalanced by performing one of the two transformations shown above. More pre-
cisely, let fiE denote the balance ofthe right subtree ofT after the insertion or deletion
has been done. If fiE < (1 2)/(1 ), then a rotation will rebalance T, otherwise
a double rotation will rebalance T.

Sketch ofproof. Under the various hypotheses, it can be shown that after the
transformation has been applied, the new balances are all in the range [, ].

If the balance of a subtree goes above 1 , then we use the mirror images
of these transformations, and a corresponding theorem. Introducing additional
transformations will probably increase the allowable range of . However, since

x///2 .2928 and BB[] BB[1/2] is empty for 1/2 > > 1/3, 0 __< 1 x///2
is a reasonable choice. By Theorems 2 and 3 we know that the average search time
will be no worse than 15 longer for a BB[1 x//2] tree than for a completely
balanced tree with the same number of nodes, while the worst case search time
will be at most twice as long. Considering the ease with which nodes can be
added and deleted from BB trees, this moderate increase in search time is justifiable.

Insertion and deletion in BB trees. Assume that each node N ofthe tree has the
form

LLINK DATA SIZE RLINK

and that the DATA field of every node in the left subtree of N is lexicographically
before DATA(N), while the DATA field of every node in the right subtree is
legicographically after DATA(N); thus the tree is a search tree relative to the
lexicographic ordering. SIZE(N) is the number of nodes in the subtree whose root
is the node N.2

The following algorithm, given in detail in the Appendix, inserts the name
NEW to the tree, preserving both the balance and the ordering: Follow links
down through the tree going left if NEW is less than the node and right otherwise.
If NEW is found to be equal to a name in the tree, then carry out the procedure
described in the next paragraph. At each stage of the search, check to see whether
the addition of a node to the subtree will unbalance the tree; if not, add one to the
size field and continue down the tree. If the subtree does become unbalanced,
then perform the appropriate transformation before continuing down the tree.

Notice that we may be modifying the tree for nothing in the event that we
discover that NEW is already in the tree after modifications have been made.
In that case we retrace the path down the tree correcting the SIZE fields, but not
restructuring the tree: the restructuring which has been done, albeit unnecessarily,
has improved the balance of the tree.

C. A. Crane and D. E. Knuth have suggested that it may be more useful to have SIZE(N) be
one plus the size of the left subtree of node N. This has the effect of simplifying the arithmetic in some
algorithms (e.g. in finding the kth data item) while making it slightly more complicated in others.
See Crane (1972) and Knuth (1973).
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Deletion of a node is similar: Follow links down through the tree as before,
subtracting one from each SIZE field. If a subtree thus becomes unbalanced,
perform the appropriate transformation and continue down the tree. When we
arrive at the node N to be deleted, one of three cases arises. If N is a leaf, simply
delete it. If N has only one son, link the father ofN to the son of N, thus deleting N.
Otherwise, find the postorder successor of N (or predecessor, depending which
most improves the balance) and promote it to the place of N, taking care to adjust
the appropriate SIZE fields and links. Again, if transformations have been made
and we find that the node to be deleted is not in the tree, we correct the size fields
in a second top-down pass, but do not restructure the tree.

The time required by the insertion and deletion algorithms is clearly propor-
tional to the search time; thus Theorems 2 and 3 demonstrate that insertion and
deletion require O(log n) time. Of obvious interest is the coefficient of the log n.
This coefficient will be the same for insertion and deletion as it is for searching,
plus whatever time is required to do the rebalancings. Hence it is important to
know the expected number of transformations which must be performed during
insertion or deletion.

In order to proceed with such an analysis, we must assume some sort of
distribution of root-balances in trees of n nodes. Given a tree in BB[a], insertions
and deletions have the effect of shifting the root-balance around in the interval
[a, -a]. The behavior of the root-balance under insertions and deletions is
quite similar to a discrete, one-dimensional random walk with reflecting barriers
when a step would take the root-balance outside the interval, a transformation is
applied and the root-balance moves closer to 1/2. According to probability theory
(see Feller (1968, p. 391)), the distribution of positions for such a random walk is
uniform over the interval and hence this is the assumption we will make. This
assumption is weak, however, since the barriers of the random walk corresponding
to the shifting of the root-balance are what might be called "repulsing ;" they do
not just reflect the particle back the same distance that it tried to go forward, but
rather they repulse the particle (quite strongly) to send it closer to 1/2. It is thus
likely that a more accurate assumption would be a truncated normal distribution
centered at 1/2, and hence that the expected number of transformations is even
smaller than the following theorem indicates.

THEOREM 5. Under the (weak) assumption that distribution of root-balances in
a BB[a] tree is uniform over [a, 1 a], the expected number of tree transformations
required for insertion or deletion of a node is less than 2/(1 2a).

Sketch ofproof. If T is a tree of n nodes in BB[a] with and r nodes in its left
and right subtrees, respectively, then

a(n+ 1)- 1 , r =< (1- a) (n + 1)- 1.

For simplicity, we shall approximate these lower and upper bounds by an and
(1- a)n, respectively. Since the root-balances are uniformly distributed in
[a, a], each of the (1 a)n an (1 2a)n possible values for v and r is
equally likely to occur as the number of nodes in the left and right subtrees,
respectively, of T,. Of all the (1 2)n possible values, only two are critical for
insertion or deletion, the largest and the smallest; only for these balances can
insertion or deletion cause the tree to go out of BB[a]. Thus the probability, p,,
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of causing the root-balance of T, to go out of the interval [-0, 0] is a

(1 20)n’
and this is also the probability of having to apply a transformation at the root
of T, during insertion or deletion.

Now the expected number of nodes in the two subtrees of a tree in BB[0]
with m nodes is m/2 since the average root-balance is 1/2 by the uniform distribu-
tion assumption. Hence the expected number of nodes whose root-balances will
go out of , 0 and will thus need rebalancing is, assuming for simplicity that
n is a power of two,

log

Pn + Pn/2 -k Pn/4 +’’" + Pn/n --iEo 2oc)n/2

log

(1 2e)n i=

2n- 2

(1 20)n 20"

This completes the sketch of the proof.
It is remarkable that this bound on the expected number of rebalancings is

independent ofthe size ofthe tree. For example, we find that on the average no more
than 4.85 transformations will be necessary to insert or delete a node when the
tree is in BB[1 xf/2].

Comparison with height-balancedtrees. Height-balanced trees are characterized
by the fact that the difference between the heights of the left and right subtrees of
any node is at most one. For example, the Fibonacci trees described earlier are a
special case of height-balanced trees. The same two transformations serve to
restructure a height-balanced tree which has been upset by an insertion or deletion.
Adel’son-Vel’skii and Landis (1962) have shown that one transformation is
sufficient to rebalance a height-balanced tree which has been unbalanced by an
insertion; the expected number being about 0.3 (see Knuth (1973)). Deletion from
height-balanced trees may require rebalancing at each level of the tree, but an
argument similar to that in Theorem 5 shows that the expected number of trans-
formations needed is constant.

Height-balanced trees cannot be described as BB[] for any .
THEOREM 6. There are trees in BB[1/3] which are not height-balanced and for

all > 0 there is a height-balanced tree with root-balance less than .
Proof The first part of the theorem is shown by considering a tree such as

that in Fig. 2 which is in BB[1/3] but which is not height-balanced. The second
part is shown by considering a tree whose left subtree is the Fibonacci tree of height
h and whose right subtree is the completely balanced tree of height h. As h -the balance of such a tree, which is height-balanced, goes to zero. This completes
the proof.

This implicitly assumes that the node is inserted in (deleted from) either subtree of T, with
probability 1/2, regardless ofthe size ofthese subtrees. Ifone assumed that the probability ofinsertion or
deletion from a subtree is proportional to the size of this subtree, then this analysis would become less
favorable for insertion, and more favorable for deletion.
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FIG. 2

The search time for height-balanced trees is somewhat better than for BB trees.
The worst case search time for height-balanced trees is about 1.44 log n compari-
sons. The average search time can be as bad as 1.05 log n comparisons; this is the
average search time for Fibonacci trees; the exact bound is unknown. In contrast,
the search times for a tree in BB[] are bounded by Theorems 2 and 3. For example,
when z x/2, the worst case search time is about 2 log n and the average
sear,ch time is less than 1.15 log n.

Insertion and deletion of nodes in height-balanced trees require a top-down
pass over the path from the root to the node to be inserted or deleted, followed by
a bottom-up pass over that same path (for insertion, the second pass can instead
be top-down). Typically, the bottom-up pass is accomplished by the use of a
pushdown stack. The use of a stack can be eliminated but only at some cost in
time or memory (e.g., every node could store an upward pointer to its father.
Alternatively, the return path to the root can be retained by reversing the links
on descent, and restoring them on the way back up; an additional bit would be
necessary to indicate whether the right link or the left link had been reversed).
In most cases, insertion and deletion of nodes in BB trees is accomplished by a
single top-down pass over the path. In the event of a redundant insertion or dele-
tion, a second top-down pass is necessary. Unlike a bottom-up pass, an additional
top-down pass does not require the use of a pushdown stack or its equivalent,

A height-balanced tree requires at least 2 bits of storage for every node to
indicate which of the three possible conditions holds between the heights of its two
subtrees. By comparison, a node in a BB-tree requires more storage because it has
to hold the size of the tree rooted at this node. However, some important benefits
compensate for this. Such important operations as finding the kth data element,
or the qth quantile, or how many elements there are lexicographically between
x and y, can all be done in time O(log n), while they seem to require time O(n) if
the size information is not explicitly stored.

Table summarizes the comparison of random trees (BB[0]), height-balanced
trees, BB[1 x//2] trees, and completely balanced trees (BB[1/2] if we ignore
semileaves).

The important advantage BB trees have over height-balanced trees is that
the trade-off between search time and insertion/deletion time can be specified by
the appropriate choice of z, the bound on the balance. Thus when insertions and
deletions are rare could be chosen close to x//2, while if insertions and
deletions are very frequent, could be chosen closer to zero. It is not easy to
generalize height-balanced trees to include a parameter which has the function
of . The obvious choice would be to define a tree T to be of height-balance h if
and only if for every node N of T, the heights of the two subtrees of N differ by
at most h (the special case h yields the conventional height-balanced trees);
see Foster (1972). This suffers from the fact that the smallest possible change in h
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TABLE

Number of comparisons Expected number of Time required to return

needed to search the tree comparisons needed to unbalanced tree to its

in the worst possible search average tree class

Random trees of n nodes n
(BB[0])

AVL trees of n nodes 1.44 log(n + l)

BB[ x///2] trees of n 2 log (n + 1)
nodes

Completely balanced trees log (n + 1)
of n nodes (BB[1/2], ignoring
semileaves)

1.39 log (n + 1)* 0

log (n + 1) + 0.25 O (log n)

1.05 log (n + 1)f O (log n)

log (n + 1) O (n)

Due to Hibbard (1962).
Based empirical evidence; the exact bound is unknown.

(say from h to h 2) changes the class of trees very drastically, and thus the
compromise between search time and rebalancing time cannot be finely tuned.

Appendix. The insertion algorithm. The algorithm presented in this Appendix
is given in sufficient detail to make its implementation fairly easy; we have imple-
mented and tested it in SNOBOL.

Assume that each node of the tree has the form

LLINK DATA SIZE RLINK

with the four fields as previously described. To simplify notation, if T is a pointer
to a tree whose root is such a node, then

0
IITll

SIZE(T)

if T is empty,

otherwise.

The name NEW is to be added to the BB[e] tree pointed to by a header node:

T

I
tree

R is a pointer which will be used in the search through the tree to find out
where NEW should be added. RP is always one step behind R in the tree; that is,
RP will point to the father of the node pointed to by R. S is a variable whose value
is either "L" or "R" and S. LINK is either LLINK or RLINK according to the
value of S. For example,

S "L",

S. LINK(P)- P
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has the same effect as
LLINK(P) ,- P.

The value of S together with the value ofRP tell us which pointer has to be modified
when we rebalance a subtree.

Step (Initialize). Set RP T and S "L". Now the pointer which is one
step behind points to the header node of the tree.

Step 2 (Small tree?). Set R S. LINK(RP); tlis moves us down one level in
the tree. If 1/([[R[[ + 2) >_ e then insert NEW in the subtree pointed to by R using
the obvious method, i.e. without any rebalancing; we can do this if the tree is small
enough. If in doing this insertion we discover that NEW is already in the tree, then
go to Step 9.

Step 3 (Compare). Compare NEW to DATA(R). If NEW DATA(R), then
the name is already in the tree, so we go to Step 9. If NEW < DATA(R), go to
Step 7.’

Step 4 (Rotation no help?). If IIRII 2, RLINK(R) is not null, and
DATA(RLINK(R)) > NEW, then set S. LINK(RP) to point to the structure

DATA(R)I_ /DATA(RLINK(R)) 1 //
and stop. When e < 1/4 this keeps the insertion algorithm from going into an
infinite loop on a subtree of two nodes when the name to be inserted lies between
them, e.g.,

A

C
when we try to insert "B".

Step 5 (Add to right subtree). Compute what the new balance of R will be
after insertion:

LLINK(R) +
IIRII / 2

If __< v __< 1 , then no rebalancing is needed at this level, so set

SIZE(R) SIZE(R) + 1,

RP.-R,

R RLINK(R)
and go to Step 2.

4 The two cases are not handled symmetrically. Step 4 is needed to prevent an infinite loop under
the conditions described" if the symmetrical case arises, the algorithm performs a rotation in Step 7
and returns, eventually, to Step 4.
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Step 6 (Rebalance from right to left). Rebalance, using the transformations
given in the figure bejbre adding the name. If IIRII 2, then use rotation.
Otherwise, compute the value f12 will have after the insertion of NEW. If
f12 < (1- 2)/(1- ), then use rotation, otherwise use double rotation. Set
S. LINK(RP) to point to the rebalanced subtree and go to Step 2.

Step 7 (Add to left subtree). Compute what the new balance of R will be after
insertion"

IILLINK(R)II + 2
Y---

IIRII / 2

If =< v =< , then no rebalancing is needed at this level, so set

SIZE(R) ,- SIZE(R) + 1,

RPR,

R ,- LLINK(R),

and go to Step 2.
Step 8 (Rebalance from left to right). Rebalance, using the mirror images of

the transformations in the figure, before adding the name. If ][RJ[ 2, then use
rotation. Otherwise compute the value f12 will have after the insertion of NEW.
If f12 (1 2)/(1 ), then use rotation, otherwise use split-rotation. Set
S. LINK(RP) to point to the rebalanced subtree and go to Step 2.

Step 9 (Duplicate name). We have found that NEW is already in the tree,
so a second top-down pass is needed o correct the size fields. Set R ,- LLINK(T)
so it points to the top of the tree.

Step 10 (Correct size field). CompareNEW to DATA(R). IfNEW DATA(R)
we are done. Otherwise set SIZE(R) - SIZE(R) 1. Then, if NEW DATA(R)
set R ,- RLINK(R), otherwise set R ,- LLINK(R). Repeat Step 10.

Acknowledgment. We are grateful to C. A. Crane and D. E. Knuth for very
helpful comments which were based on an earlier version of this paper.
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ISOMORPH REJECTION AND A THEOREM OF DE BRUIJN*

S. G. WILLIAMSON’f

Abstract. Let G be a group acting on a finite set S. Let L be a G-stable subset of S and denote by
A a transversal for the orbit partition of G acting on L. The problem of devising efficient generating
algorithms for A is called the "isomorph rejection" problem. Given a field F of characteristic zero, let
F denote al’l functions from S to F. Note that F is an algebra under the operations of pointwise
addition and multiplication. The problem of generating A or Ia (the indicator or characteristic function
of A) may be regarded as a special case of the problem of generating and representing functions q9 in
F (in case q I). In this context, instead of attempting to generate I directly one may instead choose
a pair of linear operators (T0, T1) and attempt to construct functions vl,..., vp in Fs such that
To(v + + vp) T(Ia). The construction of (vt, ..., vp) may be regarded as a "weak solution" to
the isomorph rejection problem (which becomes an actual solution if T T identity). In this paper
properties of such constructions are considered in the interesting case where S R is itself a finite
function set and the operators To and T are constructed from representations of the group G as
operators on Fs. The extraction of information from such weak solutions is carried out by means of
linear functionals on Fs. In this setting certain functionals yield iriformation about the cardinality of
A in the form of various well-known identities due to deBruijn and P61ya. Some examples of weak solu-
tions to isomorph rejection problems are given.

Key words. Isomorph rejection, tensor algebra, generating functions, P61ya’s counting theorem.

1. Introduction. Let L be a set and let G be a group acting on L. All sets are
assumed to be finite. We are concerned with the problem of generating a transversal
A for the orbit partition of the action of G on L. Such problems are often called
"isomorph rejection problems" [4]. The idea, of course, is to construct an efficient
algorithm for the generation of A. The nature of this problem as manifested by
various examples that occur in practice is of considerable interest. One trivial
consequence of such an algorithm is that we know the cardinality IAI of A. Thus
we have "solved" an enumeration problem. However, having only solved an
enumeration problem we may be far from having solved the corresponding
isomorph rejection problem in any meaningful way. Having the list A stored in a
computer in some form gives in general far more information than simply knowing
the cardinality ]AI. Thus the very worst accepted procedure for computing IAI
should in some sense be no more complicated than the best known generating
algorithm for constructing A. The problem ofcomputing IAI (and related questions)
has been given considerable attention. In what follows we discuss certain inter-
relationships between the construction problem and results concerned with the
computation of IAI, particularly the work of de Bruijn [1], [2].

2. The set A mentioned above is a subset of L. For any finite sets R and D
let R denote the set of all functions with domain D and range R. Suppose the sets
L under consideration are all subsets of some set S. Let I, denote the indicator or
characteristic function of L. The problem of generating and storing A in machine
computation is trivially equivalent to generating and storing Ia {0, 1}s. It is

* Received by the editors September 6, 1972.

f Department of Mathematics, University of California, San Diego, La Jolla, California 92037.
This work was supported by the Air Force Office of Scientific Research, Air Force Systems Command,
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frequently convenient (in connection with obtaining generating functions for
example [1], [2], [5]) to consider subsets L of S where a "weight" or element from
a field F is assigned to each element of L. Thus instead of considering the space
of characteristic functions {0, 1}s, we replace {0, 1} by a field F of characteristic
zero. We thus consider the problem of generating and storing functions q9 e Fs,
which includes the case q IA. We remark that Fs is an F-algebra of functions
of dimension IS[ under the usual operations of pointwise addition and multipli-
cation. If S R is itself a set of functions with domain D, IDI d, then we say
that the corresponding F-algebra has rank d. In any case, the indicator functions
of the one point subsets I, x e S, form what is usually called the "standard basis"
of the algebra. For example, if S {1, ..., n}, then I is the function which

or, more briefly,assigns 1 to k and 0 to all j k. That is, I
I (0, ..., 1, ..., 0) is the basis vector for the space of n-tuples that assigns a
1" to the kth coordinate" and 0" to all other coordinates." In the case where
S R, IRI r, IDI d, Fs has dimension re and the standard basis is the set
{Im, fe R}. For convenience of notation we write simply I. for the indicator
function of {f}, R {1, ..., r}, D {1, ..., d}.

We now describe certain special features of the algebra Fs when S R.
Let Me,(F) denote the set of d x r matrices over F. For A Me#(F) let/ denote
the element of Fs defined at each function f e S by (f) H- am, where ao

i
denotes the i, jth entry of A. If S {1,2}’ and if A and f(1) 1,

-1 2

(1 21)) thent(f)=-l. LetHe={iAeMe,(F)}denotef(2)= 1 i.e.,f-

the set of all such functions in Fs. We shall call He, the set of homogeneousfunctions
ofrank d. We leave it td the reader to verify that/ 0 (the identically zero function)
if and only if some rowA ofthe matrix A is zero. Also the reader should check that
-/ 0 if and only if there exist c e F, 1, ..., d, such that for each the ith

row A(0 cB(o and 1--If- c 1. These two facts interpret the equality of functions
in He, in matrix terms. The reader should also check that the standard basis

1 2
elements are all in He,. In the example above wheref-

1 1
we have I -/,

where A as the reader may easily check from the definitions. Note also

that if e F and e He, then e =/ e He,, where B is obtained from A by
multiplying any row (no matter which !) by e. Thus in our example 6 =/, where

B or B Since Fs is an algebra it should make sense
-1 -6

to compute the product /]/. Observe that /(f)= fl(f)(f) by definition of
multiplication in Fs. The latter expression is

d d d

H a,y(,)1-[ b,y(,)= 1-[ a,y.)= ((f).
t= t= t=

where C (cij) with cij ajbj. Thus C A B is the Schur product (Hadamard
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product) of the two matrices A and B obtained by componentwise multiplication.
Addition ofelements ofHd, is more involved. The reader should check for example

that if A B then A +/ (, where C (take
1 1 1

R D {1,2} as above). In general, if Ai)= Bi)= C) for all i#j and if
Ctj) Atj) + Btj), then ] +/ . Unless storage space is a problem this rule
can be ignored in most combinatorial computations described below. Note that
one would expect to have to specify rd elements of the field F to describe an
"arbitrary" function in Fs where S R, IRI r, IDI d. However, any element
of Hn.r is specified by only rd elements of F. What is more, since the standard basis
ofFs is contained in Hal,r, any q Fs can be written as a finite sum ] + + ]p

q of elements of Hal.. There is a minimal p for which this statement is valid,
although the corresponding functions ], 1,..., p, may not be elements of the
standard basis. The computation ofthis p and the correspondingAfunctions can be
extremely difficult. However, even suboptimal solutions to this problem can repre-
sent some quite compact and curious ways of representing functions q or indicator
functions IA or Ia in Fs, as we shall see below.

We now consider an elementary example. Let D {1, 2, 3, 4} and
R 1, 2, ..., r}. Think of D as the four vertices of a square as shown in Fig. l(a).

2 3 4
A functionf R, for example f represents a "labeling" of the

3 2 1
vertices with integers from R as shown in Fig. (b).

3

(a)

FIG.

(b) 2

Now, let S R and let L c S denote all functions f R which have the
property that if a "1" appears at a vertex the diagonally opposite vertex is also
a "1". It is easy to check that the indicator 1L A + B + C + D, where A, B, C,
and D are 4 r matrices given by

0 0 0 0 0 1

,oo

o
A= B= C= D=

10 10 0

0 0 0 1 0

01...1

01

01 1

01 1
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Let G C,, the cyclic group generated by the cycle r (1 2 3 4), act on D.
For tre G, fe R, define (trf) f a- (f composed with tr- 1). Thus G acts on S.
Clearly L is invariant under the action of G. Let A be a transversal for this action.
We are interested in IA. The set A represents all squares with vertices labeled with
integers {1, ..., r}, where two squares are regarded as the same up to rotations
in the plane, and where any "1" must have a "1" diagonally opposite to it. The
following remarks represent one way of looking at this question which extends
to many other situations in an interesting way. For tr s G define linear operators
tY and on the standard basis of Fs by I: I:) and tIy I:z(af f). Here
Z (statement) is 1 if statement is true and 0 if statement is false. We define tY and t
on all of Fs by linear extension from the standard basis. If X is any d r matrix,
then a2 , where the ith row Y Xt_ li). That is Yis X with the rows permuted
according to a-1. For example r/ (, .2 , .3/ in the representation
of IL given above. We define two linear operators

1
(2.1) TG=G- Z ty

o’G

and

(2.2) QG - Z .
trig

Observe that we have two representations of IL as a sum of elements in He.r.
Trivially,

(2.3) I/ Is,
fL

and from the above,

(2.4)

Using the operator T we may write

(2.5)
s a l--fiy T Is T

where Gs is the stabilizer of G at f and

IL=A+B+C+D.

(2.6) IL T(] + 2/ + /3).

From the definition of QG one easily checks that Q(ls) (IGsl/IGI)Is and
that TQ QTG. Thus from (2.5) and (2.6) we obtain

(2.7) TQ(,3, + 2/ +/5) T(SAIs

For convenience we make the following definition.
DEFINITION 2.8. Let N c S R and let To and T1 be linear operators on Fs.

A sequence of elements (A1, ..’, Ao) in Hd.r will be called a (To, T1) composition
or pre-list of length q ofN if To(A1 + +/]q) TI(JSN If).
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We remark that if To T1 identity, then 21 -1- -’ 2q IN and finding
(/il, ".., q) is equivalent to knowing the list N. We may thus say that (A, 2/,/3)
is a (TGQo, To) composition or pre-list of A. The construction of the set A or
equivalently Ia Y’.ya Iy is the desired output from an algorithm designed to
solve the isomorph rejection problem for the list L under the action of the group G.
Thus to construct (/i, 2/,/3) is to construct the preimage under ToQo of the image
of the desired list underTo. Settingp=(1 0...0),q=(0 1...1),s=(1,...,1),
we may represent (,, 2/2,/3) by the table of Fig. 2(a). The top row represents the
coefficients of the A,/ and/3. The vectors A,/, and/3 are in turn specified by the
columns.

2

p p q

P q q

p p q

p q q

-4

p

q

+4

p

p

q

q

(a) (b)

FIG. 2. rwo(ToQo, To) compositions or pre-lists of A (p (l 0...0),q =(0 l...1)s=(1 1... 1)).

This table (some remarks on Fig. 2(b) are made below) is not a "solution"
to the isomorph rejection problem but still retains much of the desired information
about A. For example, if we define to be the linear functional on Fs such that
1(1) 1 for all f, then l(.A/..) IA] is the number of elements in the list A. It
is trivial to check that for any X (fj) in Hd,r, l(2) is the product of the row sums
of J?. Thus 1To2 12 for any 2, this product being independent of the order of
the rows. Thus lTo as operators and ITGQo2 lQo2. To compute lQo2 we
must compute 17 for each a e G. The rule for such a computation is a special case
of Theorem 3.2 below but is easy to state:

(a) Construct D, the partition of D induced by the cycles of a (i.e., the orbit
classes of the cyclic group (a) generated by r as (r) acts on D).

(b)

For example, let

acdg j=l

Xll X12 X131
X21 X22 X23 /
X31 X32 X331
X41 X42 X43/
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1 2 3 4\
and let a Then De 1, 3}, {2, 4}} since the cycle decom-

3 4 2
position ofr=(13)(24).ForaeDawehaveeithera= {1, 3} ora= {2, 4}.
As r 3, (b) becomes

lt2 -(XllX31 --[-- x12x32 .-.[-x13x33)(x21x41 .-[- x22x42 --1- x23x43).

With these observations it is a trivial matter to compute of the left-hand side
of (2.7) (to obtain of the right-hand side which is IAI). We consider a e, ’c, "c a

and ’c3. Note that l- l-3 and that the row sums of p and q are 1 and r 1 respec-
tively. We compute, referring to (2.7) and Fig. 2(a),

l( + 2/ +/3) + 2(r- 1)2 q-(r- 1)4,

2/( + 2/] + b)= 2(1 + 0 + (r 1)),

172(+2/+/3)= +2(r- 1)+(r- 1)2

Thus we have, referring to (2.2),

(2.9) IzXl- 1 + (r- 1)+ r- 1)2 + r- 1)’
as a polynomial in r. (The same procedure applied to Fig. 2(b) yields Iml r4/4

r3 d- -r2 23-r -I- 1 which is easily seen to be the same polynomial as specified
by (2.9)). For example when r 2;IA] 3 and when r 3, IAI 10. These lists
are shown in Fig. 3.

2 2 2

FIG. 3(a). 2, IA] 3

2 3

2 3 3

FIG. 3(b). 3, IAI 10
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There are many possibilities for the linear functional other than the "counting
functional" and need not satisfy lTc, 1. We have said little about the field F,
which might be taken to be the field of rational functions in a variable z. We might
define l(I.r zIs- ,(2)1, for example, which tells us how many times the symbol "2"
appears in the image off. It is easy to check (by writing )? . (I-I xt.r(t))i.r in
terms ofthe standard basis fyand applying 1) th.at l(8) (xll + XlzZ + x13 + "’)
(x2 + x22z + x23 +’")’" (xaa + xa2z + Xa3 +’"). Thus lTG in this case.
Applying to the right-hand side of (2.7) thus gives a polynomial g(z) go + gz
+ g2Z2 nt- g3Z3 + g4z

4 where the coefficient gt is the number of elements of A that
have exactly 2’s in the image off. Of course, in general the way to find the actual
values of these coefficients is by applying to the left-hand side of (2.7) (or to
Fig. 2(a) or (b)). The rule for computing lt8 is now given, for any a G, by

1-I x, + I] x,.z + l-I x, +...).a

As in the computation of (2.9) we have (setting p r 2),

lg’(] + 2/ +/5) + 2(p + z)2 + (p + z)4 q(z),

2/(/] + 2/] + b) 2(1 + (p + z)) qz(z),

/.2( + 2/ +/5) + 2(p + z2) + (p + z2)2 qB(z).

Computing

g(z) q(z) + qz(z)+ q3(z))

gives

(2.10) g(z)=(1 +p +1/4p2 +1/4p4)+(p+ p3)z+(1 +1/2p+pZ)z2 +pz3 +z’.

The first coefficient checks with (2.9) (with r replaced by (r 1)) and the remaining
coefficients are easily checked from the definition of the problem in this rather
simple case. The reader might be interested in constructing pre-lists for other
problems of more complexity than the above illustration or in writing computer
programs to do so. A (Tc,Q, T) composition of the list A’ ofall regular dodecagons
with vertices labeled with symbols {1,..., r} such that any "1" symbol has
another "1" symbol within a distance of two vertices is shown in Fig. 5. Fig. 4(a)
shows an element of A’; Fig. 4(b) shows an element not in A’. The group G is taken
to be the dihedral group of order 24 acting on D-- {1,.-., 12}. Notice the
appearance of negative coefficients. The "principle of inclusion-exclusion" was
used to prepare this pre-list [5], [6], and this particular composition was computed
by means of a general algorithm due to Mr. David Perlman of the University of
California, San Diego Computer Center. Perlman’s algorithm yields quite compa,ct
representations of various types of lists, but the question of optimality (with
regard to the length of the compositions) is not at all clear. The list in Fig. 2(b) (in
this case easily computed by hand computation) is the output of Perlman’s
algorithm for the example discussed above in connection with the (TQG, T)
composition shown in Fig. 2(a).
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3 2

2

3 2

3 3

!1 2

2 3
3 3

(a) (b)

FIG. 4. The structure (a) is in A" (b) is not

We have considered the above elementary example in detail to illustrate the
two basic aspects of a "solution" to the isomorph rejection problem in the sense
described above:

(i) construction of the pre-list or (To, T1) composition of the desired answer
for a pair of linear operators To and T1

(ii) the extraction of information from the pre-list constructed in (1).
Solutions to (i) have not been studied in any systematic way although some

results appear in [5] and [6]. Basically (i) represents a problem in computational
combinatorics which amounts to the classical isomorph rejection problem when
To T identity. In many ways (i) is perhaps the most interesting and basic
aspect of the problem, but we shall not deal with it here. We have indicated some
results in the above example relating to (ii), the extraction of information given

+ 12 + 12 + 12 + 12 +6 12 -24 12 +3

q q q q q q q q q
q q q q q q q q q
p p p p p p p p p
q q q q q q q q q
q q q q q q q q q

q q p
q q q p q

q q q p q q
q q p p q q p

q q p q q q q q
q p q q q q p q
p q q p p q p

FIG. 5. A (TQ, T) composition of A’, the list of all dodecagons with restricted positions regarded
as equivalent up to the action of the dihedral group.
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the pre-list. In the case of (TQ, T) compositions the basic question is the evalu-
ation of l# for Hd,r. Observe that if G acts on L S R/ and A is a trans-
versal for this action, then (i) is trivial. A (TQ, Tc,) composition (or (Q, T)
composition) of A is ,7, where J is the d r matrix with every entry equal to 1.
The question of the evaluation of l#) or IQ specializes to the evaluation of
IQ3 and, as one might by now guess, is closely related to Polyt-de Bruijn type
formulas for enumeration under group actions. In the next section we shall
consider formulas for the evaluation of lQ;, Hd,r, and develop the relation-
ship between our methods and those of de Bruijn [1], [2].

Explanation of Fig. 5. This table represents 10 functions z] FR), F,
where D= {1,..., 12}, R= {1,...,r}. Each column represents a 12 r
matrix A. The numbers at the top are the coefficients . As in Fig. 2, q (0

1), p (1 0... 0), s (1... 1) are r-vectors representing the rows of the
matrices A as indicated in the table.

3. The evaluation of l and P61ya-de Bruijn-type counting theorems. As we
saw in the previous section, the evaluation of l# was the key to the extraction of
certain classes of information from (TQ, T) compositions. In the previous
section the group G acted on D and hence on R/ by (af) f a-1. We had in
mind applications to labeled structures such as in the example of the square whose
vertices (D {1,2, 3, 4}) were labeled with symbols from R {1,2,..., r}. In
the example we took G C4, the cyclic group of order 4, acting on D. We could
just as well have taken G D4, the dihedral group oforder 8, acting on D. Probably
the most general group action of interest in this class of combinatorial computa-
tions is illustrated by the following example.

Let the vertices of a square be labeled with symbols 2, #, p, where # denotes an
arrow pointing to the midpoint of the square, 2 denotes an arrow pointing to the
midpoint of the edge to the left of # and p an arrow pointing to the midpoint of the
edge to the right of/. Figure 6 shows an example of such a "2,/, p-diagram" and
the corresponding figure.

Consideration of the isometries of such a figure leads one to observe that D4
acts on functions f R, where D 1, 2, 3, 4} and R {2, #, p}, but this action

FIG. 6
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occurs both on the domain and the range of the function set. The action on D is
the standard action of the dihedral group D4 generated by the permutations
r (1 2 3 4) and a (12) (34) (the vertices of the square being labeled clock-
wise from the upper left-hand corner). The action on R is given by {e, (2p)}. All
rotations of the figure act as the identity on R and reflections transpose the symbols
2 and p.

Actions of the above type can be described as follows- Let a group G be given
and let G act on D and on R. (Formally (see [2]) we are given homomorphisms
#’G --, symmetric group on D, v’G symmetric group on R.) Define the action
of G on D x R by a(i, j) (ai, aj). Givenfe R we observe that this action is such
that a(graphf) graph g for some g e R (a(S) for S c D x R is defined to be
the set ofall (ai, aj) where (i, j) e S). In particular, (ai, aj) e graph g

a- lga(i). If (i, j) e graph f this implies that j f(i) so g afa- 1, where juxta-
position of symbols denotes function composition.

2 3 4
In the above example, iff and if a (1 2) (3 4) on D and

/t # p 2

(2p) on R, then afa-1 g Observe that in the algebra F
# P P

a induces a linear operator defined on the standard basis by e(Iy) Ig. As in
the previous section we write Iy and Ig as 2 and ,, where X and Y are 4 x 3
matrices (replace 2 by "1", # by "2", and p by "3" if one wishes to simplify indexing
of the matrices). In this way we write Iy X and I Y, where

2 # p /t # p

0 0 0 1 0

 !10X and Y
3 0 3 0 0

4 0 0 4 1 0

Observe that X(i, j) Y(ai, aj) where for any matrix A, A(i, j) denotes the i, jth
entry. This statement corresponds to the fact that graph g a(graphf). In
general given X (xi), a d x r matrix, then )? yno (I-Ite=l Xty(O)Iy (take
D {1,..., d}, R {1,..., r}). Using this rule and the definition of a given
above one can check that in general aJ? f" where, as above, X(i, j) Y(ai, aj)
or, equivalently, Y(i,j) X(a-li, a-lj) for all (i, j). Notice that if G acts as the
identity on R, then this rule reduces to the rule for computing aJ given in the pre-
vious section. We define the linear operator # on F(RD) as in 2" I Iz(afa-

f). Z(statement)= if statement true, 0 if statement false. The linear
operators

1
T ff and Q 6IGI 161

are defined as in 2 ((2.1) and (2.2)). If a sequence of elements (1, "’",/]q) is a
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(TQc,, T)composition of N c S R as in Definition 2.8, and is the functional
l(ly) for allf R, then to evaluate the cardinality INI we shall describe the
evaluation of 1Qa(l + + 3q). That is, we evaluate 1#$, for 1, .-., q, a G.
(As in 2, IT 1, and hence ITQ( + + .) IQIN becomes IQa$ +
+ IQA -INI.)

We introduce some notation. Given a G, let Da and Ra denote the partitions
of D and R induced by the cycles of a in D and R respectively. If a (12) (34) as
in the above example then Da {{1,2}, {3,4}} and Ra {{u}, {), p}} {{2},
1, 3}}. The construction of the set Ra follows from the fact that a is a reflection

and thus acts on R as the transposition (2 p). For X M,r(F let X[alb] denote
the submatrix of X obtained by keeping the rows of X with row indices in a and
the columns of X with column indices in b. We define the circulant of X[alb] with
respect to a to be

Ibl- lal-
(3.1) cirX[a[b] 1-I X(ffkia ffk+jib) if Ibl/lal

j=0 k=0

and cir X[alb] 0 otherwise, where a, i, b. This computation is represented
by Fig. 7, in the case lal 6, Ibl 3.

17 2i

j=l j=2

FIG. 7. The computation of cir X[alb]

j=2

j=l

j=0

j=2

j=l

j=0

Explanation of Fig. 7. The (s,t)th box of this 6 3 array contains the
(aia atib)th entry of X. For j 0, 1, 2 take the product of the entries in the boxes
(6 terms, one entry per box) along the appropriate diagonal corresponding to
each j. Sum these products over all j. Here s {0, ..., 5}, {0, 1, 2}.

The reader should note that if d r and a (1, 2, ..., r) on both D and R
(i.e., a is the full cycle) then cir X[alb] is the standard circulant of the d d matrix
X. We now state the basic result.
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THEOREM 3.2. Let denote the trivial functional on F(RD) defined by l(I)
jbr all fand let a G. Using the notations defined above we have

Before proving Theorem 3.2 we make some observations. The result of
Theorem 3.2 gives immediately the rule for computing IQ2 (1/[G[)
Observe that for any Y (Yis) e Md,r(F) the functional 1’ If" defined by compo-
sition of the trivial functional with the endomorphism of left multiplication by

(i.e., lf’(I) l(f’I) I-Ida= Ytf(t)) can be evaluated at #2 by use of Theorem
3.2. One need only show (we leave this to the reader) that # and commute for
any such Y. Thus if l’ lf’, we have the following corollary.

COROLLARY 3.3.

l’#’2= l-] cir Z[alb])bRtr

where Z Y. X is the Schur product of Y and X.
As an example of Corollary 3.3 consider 1’ I’, where

w(2) w(r)l
w(1) w(2) w(r)/

[_w(1) w(2) w(r)_]

Here w’R F may be taken to be any function and all rows of Y are identical.
Note that if A is a transversal (s.d.r.) for the orbits of G acting on R then (from
the definition of T)

fR

But Qc,(l) (Ial/lGl)lf, and hence,

(3.4) QJ T(fa I).
Here yRO If j, where J is the d x r matrix with every entry 1. This J is a
(Q, T) composition of A of length 1. Thus in this case the construction of a
(Qr, T) or, equivalently, a (TQ, T) composition is trivial.

Assume that G acts as the identity on the range R and hence for each r, Rr
is the discrete partition. In this case,

cir Y[alb]
bRa

c(a, c(a,2) c(a,d)

wd(i)
i=1

where c(a, k) is the number of cycles of a of length k. Note that since all rows of Y
are the same, l’Tc, l’ and thus applying 1’ to both sides of (3.4) using (3.3) we
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obtain, writing W(f) [-Ia=, w(f(t)),

i= i= feA

where

is the standard cycle index polynomial. The identity (3.5) is the classical P61ya
identity [1], [2].

As another example of identities which may be derived by evaluating func-
tionals on (3.4) let us assume again that G acts on both D and R and use the trivial
functional I. Thus of the right-hand side becomes IAI. Note that in this case,
X J, we have simply cir J[alb] Ib[)(Iblllal), from (3.1). Let 6(a, k) and p(a, k)
denote the number of cycles of length k of a in D and R respectively. Thus

(3.6) I-I z(lblI]al)lb] jp(a, j)
aDa bRa k=

But for any integers p, q we have (O/Oz) e p, where (O/Oz) denotes the qth
derivative evaluated at z 0. Using this observation we write

jp(a,j) exp ZJP(,J) z
k=l k=l 0 k=l ilk

But

exp jp(a,j)z exp jp(a,j)zj exp j zj
j]k j=

Setting j exp (j zj) we obtain

k=l 0 j=l

This is one ofa number of results of this form, expressed in terms of differential
operators, due to de Bruijn [2]. The most well-known identity of this type is
obtained in the special case where G is replaced by a direct product G K x H,
where K:D, H:R. The action is defined by (a, )f f a- as above. But in
this case the sum over a e G occurring in (3.7) may be replaced by the double sum
over a e K, e H. Hence we have

Pu(i, ,a)(3.8) IAI P zx ’e 0

(see [, [2).
The point of these derivations from the circulant formulation given in

Theorem 3.2 and Corollary 3.3 is not to give still another proof of these identities
but to point out the relationship between these identities and the more general
problems described in 2. Most of the computational advantages of these identities
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(such as (3.6), (3.7) and (3.8)) are already contained in the identities in Theorem 3.2
and Corollary 3.3. There seems to be little need in most computations to bring in
differential operators at all. Identity (3.8) does have a conceptual advantage in
some situations (see [1]) in that it shows quite clearly how the computation relates
to the cycle index polynomials of the component subgroups. One should recall
that (3.6), (3.7) and (3.8) were derived from the application of Theorem 3.2 and
Corollary 3.3 to the trivial list R of all functions (hence X J). The same tech-
niques can be applied to any (TQ, T) composition (fi,, ..., fiq) of a list N.
Whether or not the evaluation of appropriate functionals can be formulated in
terms of (3.6), (3.7) and (3.8), one can always use Theorem 3.2 or Corollary 3.3.
Analogous derivations of various other extensions of P61ya type theorems [2] are
interesting and may be developed in a manner parallel to the above discussion.
We shall not consider these extensions here. Rather, we shall conclude below with
some elementary rerrmrks about the algebra F(Ro) and the proof of Theorem 3.2.

4. The algebra 1R). In 2 we pointed out how the algebra/RO) is the natural
setting for the class of combinatorial problems discussed above. Assume, for
simplicity of notation, that D {1, ..., d} and R {1, ..., r}. A function

e R an elementqeF(.’ is a rule" which assigns to eachf-
i ia ie

o(f) T, ... of the field F. Physicists will recognize that q is a tensor of
rank d, or F ’s the space of (covariant) tensors of rank d. The space F( is
simply the canonical finite-dimensional vector space regarded trivially as an
algebra by componentwise multiplication. The special structure of the domain of
q as a set of functions, R, relates to He,,, the homogeneous functions of rank d.
We now remark briefly on the algebraic notion of a tensor product of vector
spaces and how it relates to the material of the previous sections. Let V be a vector
space, dim V r. Choose a basis {e, ..., e} for V. For (v, ..., vd) eXd V,
define ff(Vl,-", va)= , where A is the d x r matrix with ith row A,

(ai,..., a), i-1,..., d, defined by the relation v- axe +... + ae.

d
X V

._ FiR)

/0

I4/

FIG. 8

We observe that (, F(R)) is a dth tensor product of V [3]. That is, we claim that
(i) The space spanned by Im , is F(R’);
(ii) For any vector space W over F and any multilinear # there is a linear #o

such that the diagram of Fig. 8 commutes.
Note that Im Hd, as defined in 2. Since Hd,r contains the standard basis

{Is’f R}, (i) above is immediate. Define #o on this basis by #o(Is) #(e-l ),
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el(d) and extend Po linearly tO F(R). Let A and v1,’-’, Vd be as above. Then

ef(a)) P(vl, "’", va).

Thus toff, p, and the above diagram commutes. One should note that , is
multilinear. Of course, the map , is not "canonical" or basis independent, but
this is exactly the useful feature in the combinatorial computations described
above. Using conventional notations we would write/] v (R) (R) Yd. Thus the
functions of Hd. are the homogeneous tensors and may be regarded, if one so
desires, as the tensor product of their row vectors. The product rule (Schur prod-
uct) ,3./ (, where C A.B is the rule @1 (R) (R)va)(v’ (R) (R)v’)

(VlV’l) (R) (R) (VdV’), where v,v’t denotes componentwise multiplication. Certain
other aspects of the above material will be transparent from this algebraic point
of view (and equally transparent from any other point of view!).

We should also remark that many of the standard operators of finite-
dimensional multilinear algebra (derivations, contractions, Kronecker powers,
induced transformations) seem to relate in various ways to the combinatorial
problems mentioned above. We have not made any systematic study of such
questions.

5. Proof of Theorem 3.2. We wish to show that 10 I-]D(bR, cir X[alb]).
From the definition of # we have that #2 2fRD(H(i,t)graph f X(i, t))(O-fu--1
=f)Iy. Let (a = G denote the cyclic group generated by O-. The condition
afa-1 f is equivalent to the condition O-(graphf) graphf. That is, (a acts
on graph f. Let {i’a Da} denote a fixed transversal for the orbit partition of
(a on D. Similarly define b Ra} Clearly, if afa-1 f, then (ia, f(ia)) a Da}
is a transversal for the action of (a) on graphf. Thus we may write

1--I X(i,j) H H X(akia, o’kf(ia))"
(i,j) graph f Dtr 0

Note that ulal(ia,f(ia)) (i,, alatf(ia)) and thus alalf(ia) f(ia). This implies that if

f(ia) is in the cycle b of Ra, then Iblllal. Conversely, we observe that if to each ia
we associate some 6, where ta is in a cycle b of Ro-, Ibllla[, then the set

Q {(rkia, O’k/a) "0 k < lal, a e De}

is clearly the graph of a functionfsuch that a(graphf) graphf. For each a Da
define

U, (t’t is in some b Ra, Iblllal}.

Let Za, H[___-o X(akia, akt) be defined for a e Da, e U,. By the above observa-
tions we have, setting W X,o, Ua’

lo-- Z H Za,q(a)"
qW aeDa
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But, interchanging sum and product (this interchange is where much of the com-
putational utility is picked up) we obtain

Note that

Z Z.,, Z Z., ;([bll[al)= cirX[alb].
tUa bRa 0 bRa

This completes the proof.
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ON THE NUMBER OF NONSCALAR MULTIPLICATIONS
NECESSARY TO EVALUATE POLYNOMIALS*

MICHAEL S. PATERSON,- AND LARRY J. STOCKMEYER:

Abstract. We present algorithms which use only O(x/ nonscalar multiplications (i.e. multiplica-
tions involving "x" on both sides) to evaluate polynomials of degree n, and proofs that at least x/
are required. These results have practical application in the evaluation of matrix polynomials with
scalar coefficients, since the "matrix matrix" multiplications are relatively expensive, and also in
determining how many multiplications are needed for polynomials with rational coefficients, since
multiplications by integers can in principle be replaced by several additions.

Key words. Polynomial evaluation, nonscalar multiplications, rational coefficients, matrix poly-
nomial.

1. Introduction. A well-known result given by Motzkin [23 and Winograd [6
is that, even with preliminary adaptation of the coefficients, at least n/2 multiplica-
tions are required to evaluate a polynomial of degree n if the coefficients of the
polynomial are algebraically independent. However we frequently wish to evaluate
polynomials with rational or integer coefficients for which this result does not
apply, and so we are led to investigate the number of multiplications required to
evaluate rational polynomials. Our main theorem is that x/ are necessary, and
we present algorithms to demonstrate that O(x/) are sufficient.

Apart from providing a satisfactory answer to a theoretical problem our
results have some practical applications. Because multiplication by an integer can
be replaced by repeated additions, the only multiplications which are counted in
the above results are those where the indeterminate of the polynomial appears in
both multiplicands, that is the nonscalar multiplications. However in some other
applications, such as the evaluation of matrix polynomials with scalar coefficients,
we are again concerned to minimize the number of nonscalar multiplications
because these may be much more expensive than additions and subtractions, or
multiplication by a scalar. For practical purposes therefore our most important
contributions are the algorithms in 3, which use only O(x//) nonscalar multi-
plications.

We define an algorithm over a scalarfield S as e e(1), e(2), ..., e(k), where
(i) e(1)eS U {x} and
(ii) either e(r) eSU {x} or else e(r)=((R),i,j), where l_<_i,j<r, and

(R){+,-, x,+} for <r<=k.
We say that e(r) defines a nonscalar multiplication/division if

e(r) x, i,j) and neither (i) S nor e(j) S, or
(r) (+, i, j) and e(j) S.
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We define the associated elements 21, "’, 2k e S(x) as

a(r) if(r) eSU{x}
forl < <k.2r r

2(R)2 ifcz(r)=((R),i,j)

We say that a computes the polynomial p(x) Six] if2r p(x) for some r, < r =< k.

2. Lower bounds. If a polynomial p(x) can be computed with k nonscalar
multiplications/divisions, then the algorithm can be expressed by the following
scheme 9.1k, where the mij, ’lij are in S and (R)r is or +.

Forr= 1,... k,

Finally,

I/_1--" 1, 12o x.

12r mr i12
i=-1

r-1

lr,i12i

k

p(x) mo,i12i.
i=-1

The mij, rfij will be called the parameters of the algorithm. It is useful to think
of 9.1k as a parameterization mapping"

92 Sa(k) {p(x) e S(x)lp(x) can be computed in =< k

nonscalar multiplication/divisions},

where M(k) the number of parameters in 9.1.
For the time being we shall consider algorithms without divisions.
THEOREM 1. For any n > 2, there are rational polynomials of degree n which

require x//- nonscalar multiplications for their evaluation by any algorithm over R
without divisions.

Proof Since we are considering algorithms without divisions and since
(re+Z) x (nS+Y)=Y x E+m-E+rfi. E+m.rfiwecantakemr,_l =rfir,-1

0 for r 1, ..., k. The constant terms are thus removed from the multiplicands
and replaced subsequently by scalar multiplications and additions. A further
reduction of 9.Ik is easily seen. By suitable scalar multiplication we can arrange
that in any multiplicand the first nonzero parameter is 1, and of course we can
assume without loss of generality that there is some nonzero parameter.

After these reductions,

121"--XXX

and

122 --(ax2 -+- bx) x (cx2 nt- dx).

The reader may readily verify that since 121 x2 has already been computed, 122
may as well be in the form 122 (m21121 q- m2o12o) x 121 where m21 1, or m21 0
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and m2o 1. Counting up the number of parameters in such a reduced form of
we get, for k => 2,

M(k)__< 1 +(4+6+...+2(k- 1))+k+2

=k2+l.

Suppose p(x) q,x" +... + qx + q0, q Q, can be evaluated in k non-
scalar multiplications by some algorithm od’, being a reduced form of 9.1. Carry
out the operations specified by the algorithm oA’ formally, and view the result as
a polynomial in x whose coefficients are integer polynomials in the parameters,
that is,

p(x) a,()x" +... + a a(t)x + ao(),

where denotes the vector of parameters of length M(k) k2 + 1 and a Z[],
0, ..., n. Regarding the as indeterminates, the a are in Q() which has

degree of transcendence M(k) over Q. Now suppose M(k) < n + 1; then the set
{ali 0,..., n} must be algebraically dependent and so satisfy a nontrivial
polynomial relation. For further discussion of this see, for example, [5, 64].
That is, for some nontrivial integer polynomial P*,

P*(a,(ii),..., ao()) 0.

There are 3(k + 1)I(k 1)I reduced forms 9.1’ of oA. Let P(a,, ..., ao)
=- [-I. P*(a,, ..., ao). If all rational polynomials of degree n were computable by
the algorithm scheme od, we should have

p(Qn+,) O.

However, since P is continuous and the rationals are dense this would imply that
P 0, contrary to assumption. Therefore,

k2 -+- 1 >=n+ or k>__x.
This completes the proof.

Note that we have actually shown that {(q,, ..., qo) Q"+ lq,x" + + qx
+ q0 requires x/ nonscalar multiplications) is a dense subset of R"+ .

The problem of evaluating integer polynomials is related to the problem of
evaluating rational polynomials because if p(x) Q[x] can be evaluated in _<_k
nonscalar multiplications by an algorithm over Q then, for some Zo Z,
zo p(x) Z[x] can be evaluated in =< k nonscalar multiplications by an algorithm
over Z. Hence Theorem 2 (with x/ 1 in place of x/ 1/2)may be deduced as
a corollary of Theorem 1, though we know of no useful implication in the opposite
direction. We give here a different, combinatorial, proof of Theorem 2.

THEOREM 2. For any n > 1, there are integer polynomials of degree n which
require at least x/- 1/2 nonscalar multiplications for their evaluation by any
algorithm over Z without divisions.

Proof Consider the finite ring F {0, 1) and the ring homomorphism
H’Z F given by

J’l ifzodd,
H(z)

0 if z even.
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If z,,x" + + zlx + Zo Z[x] can be evaluated by an algorithm over Z using k
nonscalar multiplications, then certainly w,x" +... + w lx + Wo Fix], where
wi H(zi) for 0, ..., n, can be evaluated by an algorithm over F using k non-
scalar multiplications.

As in the proof of Theorem 1, we can assume that algorithms over F without
divisions can be expressed as a certain reduced form of 9.1,. Again, we can assume
that no constant terms appear in the multiplicands so that the rth multiplication
has the form

rfir,g Since E x x E, and sincewhere E 2r-mr,il and , 7_20i,O
neither E nor E should be identically zero, there are at most

1/2(2- 1)U < 2er-1

effectively distinct and useful choices for the rth multiplication for r __> 2. Therefore
the number of different polynomials in Fix] computable by algorithms over F
with k nonscalar multiplications and no divisions is less than

1-I 22r 2k + 2 2k2 + k + 1.
r=2

(More careful counting would yield 2k2+k-2 if desired.) Since there are 2"+1

polynomials in Fix] of degree n or less, if k2 q-- k n then some of these cannot
be computed using only k multiplications. The result follows.

For algorithms which use divisions as well we obtain a result similar to
Theorem 1.

THEOREM 3. For any n, there are rational polynomials ofdegree n which require

x/- 2 nonscalar multiplications/divisions for their evaluation by an algorithm
over R.

Proof Consider each of the 2k algorithmic forms we obtain from [k by
choosing a multiplication or division at each nonscalar step. Each introduces at
most k2 d- 4k + 2 parameters. If we suppose that

k2+4k+2<n+ 1

then there is a nontrivial polynomial P Q[x,+l] for each form, such that if
q,,x" + + qo Q[x] is computed by the ith algorithmic form, then Pi(q,,, "’", qo)
=0. If

2

P(q,,"" qo) 1-I P(q,, qo)
i=1

and all nth degree rational polynomials can be evaluated using k nonscalar
multiplications/divisions, we have P(Q"+ 1) 0. But P 0 and P is continuous
which gives a contradiction, proving the result.

3. Algorithms.
3.1. A fast algorithm which uses rational preprocessing. Before giving

algorithms which use O(w/ nonscalar multiplications, we present an algorithm
which will be used later but which is also interesting in its own right. The algorithm
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is designed to work for real polynomials with algebraically independent coeffici-
ents and will therefore use at least n/2 multiplications.

Motzkin [2], Eve [1] and Pan [3] have exhibited algorithms which use
n/2 + O(1) multiplications. However, the preprocessing used by these algorithms
involves finding the roots of polynomials of large degree and this may be computa-
tionally difficult in itself. Therefore, we are led to investigate how close we can get
to n/2 multiplications by using algorithms with rational preprocessing. The best
known result is given by the following.

THEOREM 4. Any polynomial of degree n can be evaluated using n/2 + O(log n)
multiplications. Moreover, the scalars used by the algorithm are rational functions
of the coefficients of the polynomial.

Proof.
ALGORITHM A. Assume n 2m- 1. First compute x2, x4, xs, x2m-’.

This requires log2 n multiplications. Let N(d) number of multiplications used
by the algorithm to evaluate a monic polynomial of degree d given that we have
x2, x4, x2"- ’. N(1) 0 because x + a0 requires no multiplications.

Now X2p-1 "t- a2p_2X2p-2 + t_ alX q_ ao --(xp q_ c)(xp-1 _it_ a2p_2xP-2
xp-+ + ap+X + ap) + x"-t + bp_ 2 + + bx + bo, where c a_

andb a Cap+aforj 0, ..., p 2. Therefore N(2 1) 2N(2- 1) + 1
which yields

N(2i- 1)=2i-- 1 for/= 1,...,m.

So,

N(n) N(2"-)= 2"- (n + 1)/2- 1.

Allowing one more multiplication for the monic division, we have

N(n) (n + 1)/2.

Total multiplications (n + 1)/2 + log2 n if n 2 1. For general n, we can
break the polynomial into pieces of length 2 1, evaluate them separately and
put them back together using the powers x2, x4, x2vg2"l. The putting-back-
together can require at most another log2 n multiplications for a total of
n/2 + 2 log2 n. This completes the proof.

Essentially the same algorithm was discovered independently by Rabin and
Winograd and is given in [4].

3.2. Algorithms which use O(w/ nonscalar multiplications. We now present
two algorithms which use 0(/-) nonscalar multiplications. These algorithms can
in theory be used to evaluate any rational polynomial p(x) by evaluating Zo" p(x)
by an algorithm over Z for some appropriate zo Z. As mentioned before, we can
perform an integer scalar multiplication by successive additions.

First we describe a technique for producing O(w/ nonscalar multiplications
algorithms from O(n) algorithms in which we count all multiplications. The idea
is to evaluate X2, X 3, X4, X for some k and then view a polynomial of degree
n =km in x as a polynomial of degree m in xk whose coefficients are themselves
polynomials of degree k 1. These polynomials of degree k 1 act like scalars
because once we have x2, x 3, ..., xk- we can compute them free of charge. The



ON THE NUMBER OF NONSCALAR MULTIPLICATIONS 65

only complication which arises is that these polynomial "scalars" become poly-
nomials of larger degree when multiplied whereas numerical scalars remain
single numbers when multiplied.

As an example ofthis method applied to Horner’s rule, we obtain the following
O(x/ algorithm.

ALGORITHM B.

xkmakm- +’’" + alx + ao
(’’" ((akin- xk- ..1_ .....[_ ak(m_ I))Xk

Xk--I- ak( 1)- 4-’’’ 4- ak( 2))Xk

Xk--t- a2k_ -at-’’’ q- ak+ 1X 3t- ak)xk

Xk-d- ak_ -- + alx + ao.

This requires about k + m k + n/k nonscalar multiplications. Minimizing
k + n/k gives k V/-, or 2x/- nonscalar multiplications. Note that this algorithm
uses about n additions and n x/ scalar multiplications.

The best known coefficient of x/ is obtained by applying the technique to
the n/2 + O(log n) algorithm of Theorem 4.

THEOREM 5. Any polynomial ofdegree n can be evaluated using x/ + O(log n)
nonscalar multiplications. Moreover, the scalars used by the algorithm are rational

functions of the coefficients of the polynomial.
Proof.
ALGORITHM C. Assume n k(2"-1).
(i) Compute x2, x3, x’, xk (k multiplications).

(ii) Compute x2k, x4k, xSk, X2m-’k (log2 (n/k) m multiplications).
Let N(d) number of nonscalar multiplications used by the algorithm to evaluate
a monic polynomial of degree d given that we have the powers computed in (i)
and (ii) above. N(k) 0 because scalar multiplication is free.

We split a monic polynomial up in an analogous way to that of Algorithm A,
but the derivation is a little more complicated.

Let p(x) be a monic polynomial of degree k(2p 1) which we express in the
form

p(x) q(x). xkp + r(x),

where q is monic,

deg(q)-- k(p 1), deg(r) =< kp 1.

Formally dividing the polynomial r(x) Xk(p- 1)by q(x) we obtain rational poly-
nomials c(x) and s(x) satisfying"

?’(X) Xk(p- 1)__ C(X)" q(x) + s(x),

deg(c) =< k 1, deg(s) _< k(p 1)- 1.
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Then

p(x) (xkp + c(x)), q(x) + x’p- ’) + s(x).

Hence, taking p 2i- ’, where =< rn, we get

N(k(2 1)) 2N(k(2i-1 1)) + 1

which yields

n(k(2" 1))= 2"-’- 1 n/2k.
The total number of nonscalar multiplications is

n/2k + k + log2 (n/k).

Minimizing with respect to k gives k x/, or x/ + log2x nonscalar
multiplications.

As before, for general n, this algorithm may require an extra log v/ multipli-
cations giving a final total of

+ log2 n + O(1)nonscalar multiplications.

This completes the proof.
Note that this algorithm uses about n + v/-/2 additions and n- x//-/2

scalar multiplications.
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ON THE EQUIVALENCE OF
ASYNCHRONOUS CONTROL STRUCTURES*

J. ROBERT JUMP AND P. S. THIAGARAJANf

Abstract. This paper is concerned with the problem of detecting when two asynchronous control
systems are equivalent. The systems investigated in the paper are first represented by means of a formal
model called an asynchronous control structure (ACS). This model specifies the constraints imposed
on the generation of control signals by a system by means of a simple graphical model called a marked
graph. Behavioral equivalence is then characterized in terms of the set of all possible sequences of
control signals that can be generated by the system. These sequences are represented by means ofanother
(infinite) marked graph, called a behavior graph. Finally, it is shown that two control systems are
equivalent if and only if their behavior graph representations have identical (finite) generating
sets.

Key words. Control structure models, asynchronous control systems, concurrent events, marked
graphs, behavioral equivalence.

1. Introduction. In this paper we present a formal model for a class of
asynchronous control systems and develop a complete characterization of
"behavioral equivalence" based on this model. This characterization is then used
to show the existence of a decision algorithm which can be used to determine
whether or not two given systems are equivalent.

Abstractly, a control system may be viewed as a device that enforces certain
specified constraints on the order of occurrence of "events." We shall not give an
explicit definition of an event but shall assume that occurrences of events have the
following characteristics.

1. An occurrence is initiated by a control signal called a ready signal.
2. Once initiated, an occurrence requires a finite but unbounded period of

time.
3. When an occurrence terminates, an acknowledge signal is generated.
4. Each event may occur repeatedly, and several different events may occur

concurrently.
A control system communicates with its environment through communication

links, and events are classified as either input events or output events. An input event
is one that is initiated by the environment by sending a ready signal to the control
system through an input link. When the event is terminated, an acknowledge signal
is transmitted to the environment over the same link. Output events are those
that are initiated by the control system when a ready signal is generated by the
system on one of its output links. The environment then signals the completion of
the event by generating an acknowledge signal.

The ready and acknowledge signals associated with a link will be referred to as
link signals. If the last link signal transmitted through a link was an acknowledge
signal, the link is said to be idle. A link is active if the last link signal was a ready
signal. Initially, all links of a system are idle. A communication cycle on a link
consists of a ready signal, which activates the link, followed by an acknowledge
signal, which sets the link idle again.

* Received by the editors July 11, 1972, and in revised form February 13, 1973.

f Department of Electrical Engineering, Rice University, Houston, Texas 77001. This research
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Control systems of this general type have been proposed by several authors
as a means of coordinating parallel computations (e.g., [2], [4], [5], [10], [11],
[16], [17]). In this case, the events correspond to the different types of operations
executed during the computation, and the constraints imposed by the control
system ensure that the computation is determinate (i.e., independent of variations
in the time required to execute the operations of the computation).

The usual method for representing constraints on the generation of control
signals is by means of a directed graph. The model presented in this paper is also
based on a directed graph, called a marked graph [8], [9], in which the state of the
system is represented by placing markers on some of the edges. A change of state is
then simulated by the movement of markers in the graph. Although marked
graphs have been primarily used to study problems of scheduling and optimization
of resources in multiprocessor systems, they are also useful tools for representing
control systems. Indeed, a more general version, called a Petri net, has been used for
this purpose [6], [15].

We have restricted our attention to marked graphs because they are more
amenable to analysis than Petri nets while still representing a useful and powerful
class of systems. In fact, by assigning the same event to more than one vertex in the
marked graph we can model systems in which different occurrences of the same
event can have different effects on the subsequent activity of the system. In this
way, we can represent a certain type of "pseudo-conflict" which is usually
represented by means of the more general Petri net [15].

In the next section, we review the theory of marked graphs. The control
system model is presented and its basic properties are developed in 3. The
problem of characterizing and detecting equivalence of control systems is formu-
lated and solved in 4 and 5. Finally, in 6, we offer a more detailed comparison
of the models and results presented in this paper with other related work which has
appeared in the literature.

2. Marked graphs. This section contains a brief summary of those basic
definitions and properties of marked graphs that will be used in this paper. A
more detailed and complete development of the theory of marked graphs can be
found in the report by Holt and Commoner [8]. We begin by summarizing the
graph theory terminology that will be used.

A graph is an ordered pair (T, P), where T is a countable set of vertices and
P_ T T is the set of edges. A path n in the graph (T,P) is a sequence,
rt to,t,-", t,, of vertices such that (t, t+)e P for 0 <__ < n. For such a
path rc we also say that"

(a) The length of rt is n.
(b) r extends from to to t,.
(c) to and t, are end points and t, for 1 __< < n, are the inner vertices of
(d) r is a cycle if to t,.
(e) rc is elementary if all its inner vertices are distinct.

A graph (T, P) is strongly connected if, for any two vertices t and t2 in T, there is a
path which extends from t to t2. Given a vertex t, I(t) denotes the set of all edges
directed into and O(t) denotes the set of all edges directed out of t.

A marking of a graph (T, P) is a function M from P into the set of nonnegative
integers (i.e., M’P {0, 1, 2,...}).
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DEFINITION. A marked graph is a triple (T, P, M), where (T, P) is a graph
in which I(t) and O(t) are finite sets for all e T, and M is a marking of the graph
(T,P).

For the marked graph (T, P, M), the elements of T are also called transitions
and M is said to be its initial marking. An example of a marked graph is shown in
Fig. 2.1. Its marking M is represented by placing markers (darkened circles) on the

FIG. 2.1. Example of a marked graph

edges such that edge e contains M(e) markers. Thus M(tl, t3) 2, M(t3, t4) 1,
M(t2, l) 0, etc. Because of this representation, we shall refer to M’(e) as the
number of markers on edge e under marking M’, where M’ can be any marking
and e any edge.

Given a graph (T, P), a transition e T is firable under the marking M’ if
M’(e) > 0 for all e e I(t). Furthermore, when is fired, a new marking M" is
produced, where M" is defined by

M’(e)- 1 ifeeI(t)- O(t),
M"(e) M’(e) + 1 ifeeO(t)-I(t),

M’(e) otherwise.

Hence, the operation of firing a transition can be represented by removing one
marker from each edge in I(t) and adding one marker to each edge in O(t). In
Fig. 2.1, transition t4 is the only one that is firable under the indicated marking.

Let Q be the set of all possible markings of the graph (T, P). Then the next-
marking ruction t5 is a partial function from Q x T into Q defined as follows"

(a) 6(M’, t) M" if is firable under M’ and.M" is the next marking produced
when fires.

(b) 6 is undefined at (M’, t) if is not firable under M’.
6 is extended to Q x T* in the usual way.2 Let be a string in T*. Then
(a) 6(M’, )= M" if ltE...t with n > 0, and there is a sequence of

markings Mo, M1, "’", M, such that
(1) M0 M’ and M, M", and
(2) ti is firable under Mi_ and tS(Mi_ 1, ti) Mi for 1 -< __< n.

(b) 6(M’, ) M’ if 2, the string of length zero.
(c) 6(M’, ) is undefined otherwise.

If 6 is defined at (M’, ), we say that the string is firable under M’. Thus 2 is firable
under any marking.

In this paper, the class of marked graphs without multiple edges is sufficient.
T* denotes the free monoid generated by the set T.
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DEFINITION. Let (T, P, M) be a marked graph. Then T* is said to be a
firing sequence if is firable under the initial marking M.

For example, in Fig. 2.1, t4tstatEt is a firing sequence and 6(M, ) M.
A marking M’ of the marked graph (T, P, M) is said to be reachable if there is a
firing sequence such that 6(M, ) M’.

The following proposition, proved by Holt and Commoner [8], will be used
extensively in the later sections. We first introduce the following notations.

(a) Let be a string of symbols and x a single symbol. Then #(x[) denotes
the number of times x appears in .

(b) Let z to, 1,..., t, be a path in the graph (T, P) and M’ a marking.
Then E(M’In) denotes the number of markers on 7 under M’. That is,

E(M’I) M’(ti_, ti).
i=1

PROPOSITION 2.1. Let (T,P,M) be a marked graph and - to,t, ..., t,
an elementary path of this graph. Furthermore, let fi be a firable string of transitions
under marking M’ and let M" 6(M’, ). Then

Z(M"IzO- Z(M’[)+ #(tolfi)- #(t[fi).

Thus the number of markers left on a path re, after the firing of a sequence of
transitions, is uniquely determined by the number of markers on 1c before the
sequence fires and the number of times the endpoints of r fire.

Two useful restrictions that may be imposed on a marked graph are that it be
live and safe. A transition is live if it appears in at least one firing sequence. A
marked graph is live if all of its transitions are live. Liveness of finite marked graphs
has been characterized as follows.

PROPOSITION 2.2 (Theorem 1 in [9]). A finite marked graph is live if and
only if every cycle in the graph contains at least one edge e such that M(e) > O.

A marked graph (T, P, M) is said to be safe if, for all reachable markings M’
and edges e P, M’(e) <_ 1. Safeness in finite marked graphs has been characterized
by means of a distinguished type of cycle called a synchronizing loop.3

DEFINITION. A synchronizing loop ofa marked graph (T, P, M) is an elementary
cycle that contains exactly one marker under the initial marking M.

PROPOSITION 2.3 (Theorem 2 in [9]). A finite and live marked graph is safe
if and only if every edge is contained in a synchronizing loop.

For every edge e and reachable marking M’ of a safe marked graph (T, P, M),
M’(e) {0, 1}. Hence, for safe marked graphs, we will also use M’ to denote the
set of edges that contain a marker under M’. We will therefore write e M’
whenever M’(e) 1 and e M’ if M’(e) O.

Let n be a synchronizing loop such that (u, v) is the edge of in M. Then since
the number ofmarkers on a cycle does not change by transition firings [9, Lemma 1],
the firing of the transitions in the loop is totally ordered. Moreover, this ordering
induces a total ordering on any subset of edges of the loop in a natural way.
Indeed, if X is a subset of the edge set of the synchronizing loop rt, and (t, t’) X,
then we define the loop order of (t, t’), relative to X, to be 1, where is the number

Holt and Commoner use the term "basic circuit" [8].
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ofedges in X that lie on the subpath ofn from u to t’. In Fig. 2.1, n tl, t4, ts, t3, t2,
is a synchronizing loop. Let X {(t4, ts), (t3, t2), t2, tl)}. Then the loop order of
(t4, ts) is 0, that of (t3, t2) is 1, and that of (t2, tl) is 2.

3. Asynchronous control structures. In this section we present a formal model
for the class of control systems studied in this paper. This model is obtained by
augmenting the marked graph model to explicitly represent the input and output
signals of the system. We then define the behavior of these systems by means of the
sequences of signals that satisfy the constraints of the system as represented by this
formal model.

We begin by associating the links of a control system with the edges of a
marked graph in the following way.

DEFINITION. Let G (T, P, M) be a marked graph and let be a partial
function from P onto the set {1, 2,..., L} for some positive integer L. Then is
called a link assignment for G if the set - 1(0 {e Pl(e) i} is contained in at
least one synchronizing loop of G, for 1 __< <_ L.

The link assignment a assigns edge e to link a(e). If none of the edges in a- 1(0
contains a marker under M, then the elements of a-1(0 are called output edges;
if exactly one contains a marker, then they are said to be input edges. Note that
more than one edge may be assigned to the same link and that there is at least one
edge assigned to every link. The following restrictions on link assignments will be
needed later to establish the desired relationship between the formal marked
graph model and the class of control systems it models.

DEFINITION. A link assignment z, for the marked graph G (T, P, M), is
said to be valid if it satisfies the following two restrictions"

(1) No transition in T is the endpoint of more than one edge in dom z.’
(2) If (t’, t) is an edge in dom e, then [I(t)[ 1.
We can now define an abstract model for the class of control systems studied

in this paper.
DEFINITION. An asynchronous control structure (ACS) is a triple C (G, z, L),

where
(1) G is a finite marked graph that is live, safe, and strongly connected;
(2) 0 is a valid link assignment for G;
(3) the range of z is {1, 2, L}.
In order to introduce link signals into the ACS model, we shall denote the

ready signal on link by r and the acknowledge signal by a. These signals will be
called external signals since they represent the interaction of the control system
with its environment. The set {ri, a[1 <-iN L} of all external signals will be
denoted by the symbol Se. Since cz is not necessarily one-to-one, different
occurrences of an external signal may be associated with different edges in the
marked graph. In order to distinguish these different occurrences, we define an
internal signal to be one of the form r or ai, where 1 __< <= L and 0 __< j < la- 1(i)[

.6 The set of all internal signals will be denoted by the symbol St.

’ dom denotes the domain of the partial function a.

]I(t)[ denotes the cardinality of the set I(t).
Notation: The integer la-t(i)[ appears in numerous expressions throughout the paper. It will

therefore be denoted by the symbol in order to simplify these expressions.
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We make the assignment of internal signals to transitions in G as follows.
DEFINITION. Let C (G,,L) be an ACS with G (T,P,M). Then the

signal assignment for C is a function/3 from T into T O S defined as follows:
(1) /3(0 if is not the endpoint of an edge in dom .
(2) Let e (t, t’) be an edge in dom with (e) and loop order j, relative

to a- 1(i).
(a) fl(t) r and fl(t’) al if e is an output edge, and
(b) fl(t) atj- 1/ and fl(t’) ri if e is an input edge.7

Note that fl is completely determined by the link assignment a. Moreover,
it is well-defined since a is a valid link assignment (condition (1)). Since no two
edges in a-1(i) have the same loop order, the function fl is one-to-one and onto.

Although the behavior ofa control system can be represented and characterized
by the ACS model and its signal assignment, we have found the following model,
which combines these two concepts, to be more useful.

DEFINITION. Let C (G, e,L) be an asynchronous control structure with
G (T, P,M) and /3 its signal assignment. Then the signal graph for C is the
marked graph G (Tc, Pc, Mc), where

(1) T fl(T) {fl(t)lt T},
(2) P fl(P) {(fl(t), fl(t’))l(t, t’) P},
(3) M fl(M) {(fl(t), fl(t’))l (t, t’) M}.
The set T T SI is called the set of internal transitions of Gc. Thus the

signal graph is obtained from the ACS by renaming all transitions which are
assigned an internal signal with the signal itself. The correspondence between
the formal model and control system can now be established by means of this
graph.

An input link is idle if one of the edges in e- (i) contains a marker, otherwise
it is active. The interpretation for output links is reversed so that output link is
idle when none of the edges in e-(i) contains a marker, and active otherwise.
The restriction that e- (i) be contained in a synchronizing loop and the definition
of input and output edges ensure that the system starts with all links idle under the
initial marking M.

The activity of a control system is simulated by the movement of markers in
the signal graph. When a signal vertex xi fires, this is interpreted as the generation
of the external signal x. Recall that a communication cycle on a link consists of a
ready signal followed by an acknowledge signal which causes the link state to go
from idle to active and back to idle again. If link is an idle input link, then there is
an input edge (atj- /’, ri) in the signal graph which contains a marker. When
vertex rl fires, generating the external signal ri, the marker is removed, signifying
the change of the link state from idle to active. The link remains active until a
marker is placed on edge (a, rtJ+ l/n) by vertex a1 firing and generating signal ai.
Hence a communication cycle on an input link is simulated by a marker leaving an
input edge in -(i) with loop order j, followed by a marker entering the edge in- 1(0 with loop order R[j + 1/i]. In a similar way, a communication cycle on an
output link is simulated by a marker passing through an output edge.

REj/’i] denotes the remainder and Q[jfi] the quotient obtained by dividing j by . Thus
j Q[j/’i]’i + R[j/’i].
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Note that the condition that e- 1(0 be contained in a synchronizing loop will
ensure that ready and acknowledge signals alternate on each link. Since the loop
order has been used to assign superscripts to the internal signals, the firing of
signal vertex xl may be interpreted as the jth (modulo 7) generation of external
signal xi. Finally, the two restrictions that are required of valid link assignments
have the following interpretation. The restriction that no transition be the endpoint
of two edges in dom e ensures that no two signals will be constrained to occur
simultaneously. The second restriction guarantees that the only constraint placed
on the generation ofsignals by the environment ofa control system is that ready and
acknowledge signals on the same link alternate.

Fig. 3.1 is an example of the signal graph of an ACS. It has two input edges
(both assigned to link 1) and three output edges (all assigned to link 2). The first

FIG. 3.1. Example of a signal graph

communication cycle on link 1 corresponds to the movement of a marker through
transition r, and a. After this, the second cycle on link 1 can be initiated (by
firing vertex r]), but it will not be completed until the first cycle on link 2 is complete.
The initiation of the second cycle on link 1 and the termination of the first cycle
on link 2 will initiate a sequence of two cycles on link 2 by firing t2. After t2 fires,
the second cycle on link 1 will also be completed allowing the initiation of the third
cycle on that link. After two cycles on link 1 and three on link 2, the system behavior
repeats.

The behavior of a control system is completely characterized by the set of all
possible sequences of signals on its links. Due to the correspondence between the
generation of link signals and the firing of transitions established above, the
behavior of an ACS will be characterized by means of the set of all possible firing
sequences of its signal graph.

DEFINITION. Let fi be a firing sequence for the signal graph G. Then the
corresponding reduced firing sequence, denoted by p(fi), is the sequence of internal
signals obtained by deleting all of the internal transitions (elements of T) from ft.

Note that if T’, then p(fi) 2. As an example, consider the firing sequence
o OOl ou rltlrEalrla2tEa for the signal graph in Fig. 3.1. Then p(fi) is the sequence

o o
r2alrl

DEFINITION. Let bca reduced firing sequence for the signal graph G.
Then the corresponding signal sequence, denoted by a(), is the sequence of external
signals obtained by deleting the superscripts from all of the symbols in .



74 J. ROBERT JUMP AND P. S. THIAGARAJAN

For the reduced firing sequence 0 o 0rlr2alrfatal for the signal graph of
Fig. 3.1, a() rlr2alrla2a We can now define the behavior of an ACS C as the
set of all signal sequences for Gc.

DEFINITION. Let C be an ACS and Gc its signal graph. Then the behavior of C
is the set Bc {a(p(fi))lfi is a firing sequence of Gc}.

The main goal of this paper is to develop an effective method for determining
when two control structures have equal behaviors.

4. Behavior graphs. Although the asynchronous control structure model is a
concise representation for the behavior of control systems, it is not unique.
Therefore, in order to develop a test for equivalence of control systems, it is first
necessary to introduce an alternative marked graph representation called a
behavior graph. In this section, we show how the behavior graph for a control
system can be obtained directly from its signal graph. We then develop the basic
properties of behavior graphs that will be needed. In the next section, we show
that a reduced behavior graph (i.e., one with no redundant edges) is a unique
behavioral representation. We then present a finite test for equivalence based on
this model.

In order to develop the behavior graph model, we shall use the following
terminology. An elementary path in a signal graph is said to be signal-free if none
of its inner vertices are internal signals. A path n from x to y is called marker-
minimal if E(Mclrt’) >= Z(Mcln) for all paths n’ from x to y. Clearly every subpath
of a marker-minimal path is also marker-minimal. Finally, a signal-free path is
said to be maximal if it is not a subpath of any other signal-free path. Note that the
terminal endpoint of a maximal signal-free path is an internal signal and that any
path from one internal signal to another can be decomposed into a sequence of
maximal signal-free subpaths.

DEFINITIOba. Let C be an ACS and Gc its signal graph. Then the constraint
relation of C is the ternary relation 7c---$I x SI x {0,1,2, ...} defined by:
(x, y, m)e 7c if and only if there is a marker-minimal, signal-free path n from x
to y such that Z(Mcln m.

For example, if C denotes the ACS given in Fig. 3.1, then

{(a2, r2, 1), (a2, a, 1), (a, a], 0), (a2, r2 0)}
___

7c

is the set of all elements in 7c whose first component is a2.
The constraint relation 7c represents the constraints, on the order ofoccurrence

of internal signals, that are enforced by the control structure C. It may be inter-
preted as follows. If (x, y, m) 7c, then the ith occurrence of the signal x must
precede the (i + m)th occurrence of y in any reduced firing sequence for G.
We can now define the behavior graph model.

DEFINITION. Let 7c denote the constraint relation and Se the set of external
signals of an asynchronous control structure C. Then the behavior graph for C is
the (infinite)marked graph Gc (T, Pc, c), where

(1) {xilxi SE and j 6 Z} ,8
(2) Pc {(xi +"*, Y+("+m))l (x,a, Y, m)e 7 and n e Z},
(3)

_
{(x{, y,) PclJ < 0 and => 0}.

Z denotes the set {..., -2, 1, O, 1, 2,...}.
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The firing of transition x] in G correspcnds to the jth occurrence of the link
signal x. Moreover, there is exactly one transition in G for every occurrence of
every link signal. Hence the behavior graph for a system explicitly represents the
constraints on the generation of control signals by the system. Figure 4.1 shows a
portion of the behavior graph for the ACS given in Fig. 3.1.

The following result provides a more useful characterization of the relation

cl

FIG. 4.1. Behavior graph for the ACS of Fig. 3.1

PROPOSITION 4.1. (xJi, ytk) Pc if and only if

(xtJ/’i], yt///], Q[l/] Q[jfi]) 7c.

Proof. (x,J., y) Pc if and only if there is a triple (x’, y,, m) 7c such that
j=p+n and l=q+(m+n)c for some nCZ. But p< and q<c so that
p R[jfi], q R[1/], and Q[I/] Q[jfi] m.

We now establish the relationship between paths in the signal graph and
paths in the behavior graph of an ACS.

LEMMA 4.1. Let Gc be the signal graph of an ACS and let x and y be internal
signals of Go. If 7 is a path from x to y in Gc, then there exists a path re’ from x to y in

Gc such that
(1) 2(MclTt’) Z(Mclrc), and
(2) every signal-free subpath of re’ is marker-minimal.
Proof. Let rl be a marker-minimal path from x to y in Gc and let n E(McI)

-E(Mclrl). By definition of Gc, y is contained in a synchronizing loop, say 7t2,

which is a marker-minimal cycle. Hence the path t’, obtained by composing
with n copies of 2, satisfies conditions (1) and (2).

THEOREM 4.1. Let Gcbe the signal graph and Gc the behavior graph of an ACS C.
Let x and Yk be any two vertices of Go. Then there is a path from xi to Yk in

if and only if there is a path from x.R, [j/] to y[l/] in Gc such that
Q[II,] QEj/’i].
Proof. Assume that there is a path r from Xtj/n to yltl/] in Gc such that

E(Mclr0 Q[1/[c] Q[j/’i]. Without loss of generality, we may assume that every
signal-free subpath of rt is marker-minimal (Lemma 4.1). We show that there is a
path from xi to y, in Gc by induction on n, the number of internal signals on the
path



76 J. ROBERT JUMP AND P. S. THIAGARAJAN

Step 1. n 2. The required result follows at once from Proposition 4.1.
Step 2. n > 2. Assume the result holds for all paths in G that contain n internal

signals and assume that r contains n + 1 internal signals. Then r can be decom-
posed into a subpath rt containing n internal signals, that extends from xtJ/q to

z,, and a signal-free path rt2 that extends from zp to yt/, where zp St. Let

q ((Mclrcl) + Q[j/])P + u.

Then, since 0 =< u </3, we have that

u R[q/p] and E(Mclrl) Q[q/P] Q[j/’il.

Hence, by the induction hypothesis, there is a path from x to z, in G. Furthermore,

:(MI2) (Mlrt)-

O[1/[c] O[j/’i] O[q/p] + O[jfi]

Q[l/k] Q[q/p].

By the basis step, therefore, there is a path from z to y in Gc. This establishes the
existence of a path from xi to y in

Conversely, assume that there is a path rc from x! to Y/k in r. We shall show
that there is a path n’ from xtJ/ to yl[l/k] in Gc and that E(Mclt’
The proof is by induction on n, the length of

Step 1. n 1. The result follows at once from Proposition 4.1.
Step 2. n >_ 2. Assume the result for all paths of length n and let rt be a path

of length n + 1 from x,J. to y in C,c. Then there is a path r of length n from x to
q qz and a path of length 1 from zo to Yk, where zp c. By the induction hypothesis,

there is a path r’l in Gc from xtJ/q to ztq/o such that

(Mlrt’l) Q[q/p] Q[j/’i].

Furthermore, there is a path rcz in Gc from ..ltq/ to yltt/j such that

E(Mlrtz) Q[l/[c] Q[q/p].

Clearly r’ can be formed by composing rt’ and rz.
Since Gc is by definition a live marked graph, every cycle in Gc contains at

least one initial marker. Hence it can be easily shown, using Theorem 4.1, that
Gc is acyclic. The following corollaries develop two other useful properties of
behavior graphs.

COROLLARY 4.1. Let xi and Yk be external signals for an ACS C and let j Z.
forThen there is a path from x[ to y in cfor some Z, and a path from x to x

any l>j.
Proof. This result follows easily from the requirements that Gc be strongly

connected and that the set {x10 -< j < } be contained in a synchronizing loop.
COROLLARY 4.2. Let G (c, Pc, ) be the behavior graph of an ACS,

x , and ff a firing sequence for c. Then 0 <= #(xll)<= 1. Moreover,
#(x[) 0 /fj < O.
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Proof. We first show that x] is live if and only ifj => 0. From Corollary 4.1,
it can be easily seen that the in-degree of every vertex in Gc is greater than zero.
Hence every finite path of G is a terminal subpath of some infinite path of C,c.
Using Theorem E4 in [8], it follows that x is live if and only if every infinite path
directed into x, contains at least one initial marker.

Assume that j < 0 and let rt be an infinite path directed into xi. Let y, be any
other vertex on t. Then there is a path from y to x] in Gc. Hence, by Theorem 4.1,
there is a path r’ in Gc from yV/ to X.R,tm such that

E(MclTz’) Q[jfi] Q[1/[c] >= O.

Since j < 0, we have Q[jfi] < 0, so that < 0 also. Now from the definition of
c and the fact that y was chosen arbitrarily, we have that E(clr0 0. Hence x,J.
is not live.

Conversely, assume that j >= 0 and that y is any other vertex on an infinite
path rt directed into x. Using Theorem 4.1 as before, it can be shown that
< (Q[j/’i] + 1)/c. Hence the number of vertices on re, of the form y with t_>_ 0,

is finite. Since rt is infinite and C, is acyclic, there exists a vertex z on r such that
q < 0. From the definition of M, it follows that the subpath of rc from z, to x]
contains at least one initial marker. Hence x{ is live.

We now show that if xl is live, it can fire only once. To this end, let r be a path
from x/- to x,J., where j > 0 (Corollary 4.1). From the definition of, we have
Z(MIr) >= 1. If there is more than one initial marker on re, then there must be an
edge (z,f) of t such that < 0 and q __> 0. Then Q[q/p] >_ 0 and Q[1/[c] < 0 so
that Q[l/k] Q[q/p] < 0. But this contradicts Proposition 4.1. Hence E(]c[rt 1.
Let M’ 6(Mcl). Then

1- #(x,J.l),

-1since xi never fires. Since E(M’Irc) -> 0, we have that #(xjl) =< 1.
We shall associate signal sequences with firing sequences in the same way that

it was done for signal graphs. Thus if is a firing sequence of a behavior graph,
then a(fi) denotes the signal sequence obtained by deleting the superscripts from
all of the symbols in ft. Note that it is not necessary to first define a reduced firing
sequence since every transition in a behavior graph is associated with a signal.
We now characterize the set of firing sequences and signal sequences of a behavior
graph.

LEMMA 4.2. Let ff be a firing sequence of the behavior graph Gc (T, Pc, Me)
and let x L. Then x is a firing sequence for c ifand only if # (yl) # (xl)
>= 1 c(e) for all edges e (Yk, Xi)

Proof. Assume that x is a firing sequence of G and let e (y, x,J.") be an
element of Pc and M’ fi(Mc, frO. Then

M’(e) (e) + #(YI) # (x[
(Proposition 2.1). But M’(e) > 0 since I(x)

_
M’. Hence

# (Y,I) # (xil) _-> 1 _c(e).
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Conversely, assume that #(zqpl) #(x{l) >_- 1 c(e) for all e’= (z, x,J.)
in Pc. Let e (y, x,J.) be an edge in Pc and M’ 6(c, ). Then

M’(e) c(e) + # (Ykl) # (Xil ff)

But by hypothesis,

# (Y,I) # (x,J"l) 1 (e).
Hence M’(e) > 0 so that e e M’. But this implies that I(x]) M’. Therefore, x] is
firable under M’ and x] is a firing sequence for .

PROPOSITION 4.2. Let be a firing sequence for the behavior graph Gc
(c, , c). Let x such that (xjlN) 0 and j > O. Then Nil is a firing

sequence for Gc if and only if #(yl) 1 for all y such that 0 and there is a
path from y to x] in .

Proof. Assume that x is a firing sequence for G and that y e . Further
assume that 0 and that there is a path from y to x] in c. Let M’ 6(c, ).
Then

(yl) Z(M’I)- Z(cl)+
But E(M’]) > 0 since I(x) M’ and E(cl 0 since 0. Moreover, it is given
that #(xl)= 0 so that (yl) > 0. But #(y[) 1 (Corollary 4.2) so that

To prove the converse, assume that (yl)= for all y such that 0
and there is a path from y to x in . Let e (z, x)be an edge in P.

Case 1. q O. Then by hypothesis, # (zl) 1, #(xl) O, and (e) O.
Hence

# (z[) # (xjl) M(e).

Case 2. q < 0. Then #(x]) 0, (e) 1, and #(z[) 0 (Corollary 4.2).
Hence

# (z[) # (x[) M(e).

In both cases, the result follows from Lemma 4.2.
PROPOSITION 4.3. Let be a signal sequence of G and let be afiring sequence

of G such that a() . Then for any external signal xi, xi is a signal sequence if
and only if x] is a firing sequence where j #(xilfi).

Proof. Assume that fix is a signal sequence. Then x is a firing sequence for
some j 0. Let be an integer such that 0 < j. By Corollary 4.1, there is a
path from xi to x in G. Hence #(x*i[) (Proposition 4.2). Also, #(x]) 0
since x] is a firing sequence (Corollary 4.2). On the other hand, if > j, then
#(xi[) 0 (Corollary 4.1 and Proposition 4.2). But this implies that #(xi]) 1
if and only if 0 < j. Hence #(xi[O) j. The converse is obvious.

COROLLARY 4.3. There is a one-to-one correspondence between the set of all
firing sequences and the set of all signal sequences for a behavior graph G.

Proof. Let fi and be two firing sequences such that a(fi) a(). If
then there must exist a firing sequence and two distinct transitions x] and
such that x and y are firing sequences and a(x) a(y). But

,(xi) ,()x, ,(y’)= ,()y.
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Hence xi Yk. But then

so that x,J. y. Thus fi and r is one-to-one.
The behavior graph of an ACS may contain redundant edges. These can be

removed in the following way.
DEFINITION. Let C be an ACS and Gc (Tc, Pc, Me) be its behavior graph.

Then the reduced behavior graph for C is the marked graph Gc (,Pc, Mc),
where"

(1) To=
(2) P- is obtained from P as follows Let (x, y) P. Then (xJ, y) P if

there is no path of length greater than from x to
(3) M Pc.
This definition is illustrated in Fig. 4.2. It can be easily shown that all of the

properties of behavior graphs developed above also hold for reduced behavior

FIG. 4.2. Reduced behavior graph for the ACS of Fig. 3.1

graphs. In the next section, it will be shown that two control structures are equiva-
lent if and only if they have identical reduced behavior graphs.

Both the behavior graph and the reduced behavior graph of an ACS have the
same set of signal sequences as its signal graph. Hence they are valid representations
for the behavior of an ACS. This result can be proved using the characterizations
of firing sequences and signal sequences in Propositions 4.3 and 4.4. The details
are left to the reader.

5. Equivalence. In this section, we develop an effective test for equivalence
between control structures. We begin by showing that two control structures are
equivalent if and only if their reduced behavior graphs are identical. Although a
reduced behavior graph is infinite, it is completely determined by a finite subset
of its edge set called a generating set. Two control structures can therefore be tested
for equivalence by comparing certain subsets of these finite generating sets.

We will use the following definition of control structure equivalence.
DEFINITION. Two asynchronous control structures are equivalent if they have

the same behavior.
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Recall that the behavior of an ACS was defined as the set of all possible signal
sequences generated by its signal graph (or equivalently, by its behavior graph).
As a result, this definition imposes the constraint that two equivalent control
systems have the same number of input links and the same number of output links.
It further requires that the correspondence between the links of the two systems be
established before the equivalence test is applied.

We now show that two asynchronous control structures are equivalent just in
case they have identical reduced behavior graphs.

LEMMA 5.1. Let xi and ylk be two transitions of the reduced behavior graph G,
with j, >= O. If there are no paths from x to y,, then there is a firing sequence yl
such that # (xil) 0.

Proof. By Corollary 4.2, there is a firing sequence for t of the form y,.
If #(x[) 1, then can be written in the form x,J.2 Assume that there
is a path from xl to some transition that appears in 2. Then there is a transition
zqp and two sequences of transitions fil and fi2 such that 2 fizfi2 and there is a
path from x, to z but no path from z to any transition that appears in fi2. By
hypothesis, there is no path from zqp to y,. Using Proposition 4.2, it can be shown
that ff;X,ifftXfft2Ytk is also a firing sequence for Gc. This procedure can be used
repeatedly to remove all of the transitions from 2 that are the terminal endpoints
of paths starting at x. Finally, it can be used to remove xi. V1

THEOIFM 5.1. Let C1 and C2 be two asynchronous control structures. Then C1
and C2 are equivalent if and only ifc Pc..

Proof If 1 2, then C1 is clearly equivalent to C2. Therefore assume
that Pcl 4: Pc2. Without loss of generality, let (x{, y,)e P P2 and j, 1>= 0.
We shall show that there is a string e Tc* that is either a firing sequence for
Gcl or Gc2, but not both.

Case 1. There is no path from xi to y in Gc2. Then there is a firing sequence
wyl such that #(x{[) 0 (Lemma 5.1). But every firing sequence for G of the
form y, has # (xi[) since (x{, y) Pc (Proposition 4.2). Hence y is not a
firing sequence for Gc.

Case 2. There is a path t from xi to y, in c2. Note that since (x{, y,) c2,
the length of zt is greater than 1. Since Gcl is reduced, there is no such path in Gc.
Let z be an inner vertex of ft. Then either there is no path from z to y or there is
no path from x,J. to..Zqp in c. If there is no path from zq to y,, then there is a firing
sequence y, for Gcl with #(zl) 0. Similarly, if there is no path from x{ to Zqp,
then there is a firing sequence fiz for rc such that #(x{lfi) 0. As in Case 1,
y, and fiz are not firing sequences for Gc2.

In both cases, we can find a string of transitions that is a firing sequence for one
of the behavior graphs but not the other. This implies that C1 and C2 are not
equivalent since there is a one-to-one correspondence between firing sequences
and signal sequences of a behavior graph. l

Although Theorem 5.1 characterizes equivalent control structures, it does not
provide a finite test since it requires the comparison of two infinite graphs. In the
remainder of this section we show that it is only necessary to compare a finite
section of these graphs. We first introduce the concept of a generating set for
behavior graphs.
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DEFINITION. Let C (G, , L) be an ACS, w an L-tuple in NL,9 and let Pc/w
denote the set {(x,J., y) Pcl0 _-<j < wi}. Then the subset generated by Pc/w is
defined by

(Pc {(x+"w’, ylk+"W)l(X, Yk) PclW and n Z}.

Pc/W is said to be a generating set if (Pc -Pc.
Thus we see that if Pc/W is a generating set, then all of the edges in Pc can be

obtained from the edges in Pc/W by incrementing and decrementing the superscripts
of their endpoints by a fixed amount. The following result shows that all paths in

Pc can be generated, in a similar way, from paths whose initial edge is in Pc/w.
PROPOSITION 5.1. Let C (G, ,L) be an ACS and w NL such that

is a generating set for Pc. Then there is a path of length n from x to ylk in Gc if
and only if there is a path of length n from xtj/wd to yl-Otj/w,w in

Proof. The proof is by induction on n.
Step 1. n 1. In this case the proposition follows easily from the definition

of a generating set.
Step 2. n > 1. Assume the proposition holds for all paths of length n. There is

a path rc of length n + 1 from x,J. to Y/R if and only if there is a path tl of length
n from x,J. to Zqp and a path re2 of length 1 from z to y, for some zq c. But, by
the induction hypothesis, l exists if and only if there is a path rc’ of length n from
X.R,tj/w’l to Zqp --tJ/w’lwp. It can be easily seen that 2 exists if and only if there is a
path nz of length 1 from zqp--tJ/w’wp to yk--tJ/w’wk. Finally, n’ and nz exist if and
only if there is a path n’ of length n + 1 from x’RI[j/Wi] to yk-t2tj/wilwk. I-]

The following corollary identifies a simple and useful generating set for any
behavior graph.

COROLLARY 5.1. Let C (G, , L) be an ACS and let w Nt" such that wi
for 1, 2,... L. Then Pc/w is a generating set for

Proof. Clearly (Pc/w) - Pc Let (xi, Yk) Pc Then (x/R[J/], ’ykR[l/f],
Q[J/i]) 7c by Proposition 4.1. But this implies that

(x[j/, y[l/] + (Q[l/] -Q[j/’i])) . pc/W

Hence (x.R, tJ/’3, yk-etj/t) e Pc/W SO that (x{, Yk)S (Pc/W) by Proposition 5.1.
We now extend the definition of generating sets to reduced behavior graphs

as follows.
DEFINITION. Let C (G, e, L) be an ACS and w e NL. Then Pc/w

As before, Pc/W is said to be a generating set for Pc if (Pc/w) Pc.
This definition leads immediately to the following corollary to Proposition 5.1.
COROLLARY 5.2. If Pc/W is a generating set for Pc, then Pc/w is a generating

set for Pc"
When wi 7, for 1, 2, ..., L, then we call the generating sets Pc/w and

Pc/W the standard generating sets for Pc and Pc respectively. Figure 5.1 shows the
standard generating set for the behavior graph of Fig. 4.1. If the broken edges are

N denotes the set of natural numbers 1, 2, 3, ..-} and NL is the L-fold Cartesian product of N
with itself.
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removed, then the standard generating set for the reduced behavior graph of Fig. 4.2
is obtained. Figure 5.1 also illustrates that a behavior graph is essentially a
repetition of the pattern given by any one of its generating sets.

I

FIG. 5.1. Standard generating sets for the ACS of Fig. 3.1

The following lemma will be used to test a subset of a generating set to see if
it is also a generating set for Pc.

LEMMA 5.2. Let C (G, e,L) be an ACS and Pc/U a generating set for .
Letw be an element ofN and p an element ofN, such that u pwifor 1, 2, ..., L.
Then P/w is a generating set for if and only if

P/u {(x +"w’, y+"Wk)l(xj, y) Pc/w and 0 <= n < p}.

Proof. Let X denote the set

{(xl +"w’, y+"W)l(x], y,) Pc/w and 0 =< n < p}.
We first assume that Pc/W is a generating set for Pc, and show that Pc/u X.
If (x.,y,)eX, then 0 < r < wi + (p 1)wi pwi ug. Hence X is a subset of
Pc/U. To show that Pc/u

_
X, let (xT, y)e Pc/U. Since Pc/U - Pc and P/w generates

Pc,- there is an edge (xj, yl) e Pc/W such that r j + nw and s + nwk, for some
n e Z. But 0 =< j < wi and 0 =< r < ui p__wi, so that 0 __< n < p. Hence (x., y,) e X.

To prove the converse, assume that Pc/U X. We shall show that (Pc Pc.
Clearly X

_
(Pc/w), so that Pc/U ___(Pc/W)_. Since Pc/U generates Pc_and u =_ pw,,

for i= 1,2,-.., L, we have that Pc c_ (Pc/W). To show that (Pc/W) -P, let
(x, y)e (Pc/w).Thenthereareintegersj, andnsuchthatr--j + nwi,s + nwk,
and x P/w. Now,, e

j + nwi j +(R[n/p] + Q[n/p]p)w j + R[n/p]wi + Q[n/p]ui.

Similarly,

But

+ nw + R[n/p]w + Q[n/p]u.

and X Pc/u.
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Hence

In other words, Lemma 5.2 shows that a set Pc/W is a generating set for Pc if
there is a known generating set Pc with u pw for some p c N, such that Pc/W
"generates" Pc/U.

As an example of the use of Lemma 5.2, consider the ACS given in Fig. 5.2.

FIG. 5.2. The ACS C1

Let u (2, 4) and w (1, 2). Then Pcl/u is the standard generating set for cl and
u 2w. The sets Pc1/u and Pc l/w are specified as follows"

(r, a), (a, rl), (r, r2), (r2, a2),
(a2, r), (r, a), (a, r), (a,
(rl, al), (al, r), (rl, r2), (r22, a22), |’

!
(a22 r2), (r2 a), (a2 r), (a, a) )

(a rl) (r r2), 0 0(r2, a2),P/w (a, r), (r, a), (a, r), (a2, al)3"

The set {(x,J.+", y,+ 2")l(xi, y) Pcl/w and 0 N n < 2} is equal to

{ t ,a ,}.Pcl/W U
(rO+l, aO+l),(aO+l, rl+l),(ro+l, rO+2),, 0+2 0+2,

(a + 2, r + 2), (r + 2, a + 2) (a + 2, r + 2), (u2_1 +2, ul-1 + 1,y

But this set is equal to the standard generating set Pc l/u, so that cl/w is also a
generating set for
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We can now characterize equivalent control structures in terms of generating
sets. Since it is always possible to find a finite generating set for an ACS (Corollary
5.1), this characterization provides an effective test for equivalence. We first
introduce the following notation.

NOTATION. Let C1 (G, a, L) and C2 (G2, (Z2, L) be two asynchronous
control structures with the same number of links. Then

(a) 91 ? x(i)l, (b) 2 loaf 1(i)1,
(c) g.c.d.(,i2),
(d) i Q[/], and (e) i2

for 1, 2, ..., L. If C1 is the ACS in Fig. 5.2 and C2 the one in Fig. 5.3, then
(b) 12 3,

’2 6;
(a) I 2,

’1 =4;
(c) i ,

.=2;
(d) 11 2,

21 =2;
(e) 12 3,

22=3.
For the control structures in Figs. 5.2 and 5.3, we see that jl and 2 J2,

for 0 =< i, j _<_ L. The next result shows that this relationship always holds when
the two control structures are equivalent.

LEMMA 5.3. Let C1 and C2 be two equivalent control structures with L links.
Then il J and 2 --J2 for 1 <= i, j <= L.

Proof. Let be the least integer such that there is a path Ztl from x12 to y
in cl. The existence of re1 is assured by Corollary 4.1. Since cl c2, must also
be the least such integer for c2. The corresponding path in l_lc2 is denoted by rc2.
By Proposition 5.1, the existence of re1 and zt2 imply that there is a path from x to
y-2’ in (cl and a path from x to y/k-’* in c2. Moreover, 1’= 1- 12 and
l" tl/c2 are the least such integers for cl and tc2. Since c c2, we have
that l’= l". Hence 1f2 92 But this implies that ilj2 jli2. Since g.c.d.
(il, i2) 1 and g.c.d. (Jl,J2) 1, we have il Jl, and 2 J2" [’]

We can now state and prove the main result of the paper which characterizes
equivalent control structures in terms of a common finite generating set.

THEOREM 5.2. Let C1 (G1, 1, L) and C2 (G2, o2, L) be two asynchronous
control structures, and let w N such that w g.c.d. (91 92) for 1, 2, ..., L.
Then C1 and C2 are equivalent if and only if Pc l/w (or equivalently Pcz/W) is a
generating set for both Pc1 and Pc2.

Proof. If Pc 1/w is a generating set for both Pc1 and Pc2, then clearly c Pc2
and C1 is equivalent to C2 by Theorem 5.1. To prove the converse assume that
Pc1 Pc2. We shall use Lemma 5.2 to show that Pcl/w is a generating set for Pc1
and Pc2. To this end, let X denote the set

{(xi +"w’, Ytk+"Wk)l(Xi, Yk) Pcl/W and 0 =< n <

and u be the element of NL defined by u 91, for 1, 2, ..., L. We must show
that Pc/u X.

Let (xji, y,) cl/u. Then (x,J., y) Pc and 0 =< j < 91 Let a and b be two
integers such that ail + hi2 g.c.d.(i 1, i2) 1 and let q -Q[j/919. By Proposi-
tion 5.1, the edge (xJi+aq’ia, ylk+aqf is in /cl" Since cl "c2, (x+a’’+bq2,
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y,+" +)is in both E and c2. But

j + aq’i + bq’iz j + q’i(ai + hi:z)

=j+q’i

j Q[j/]

REjill

Similarly,

+ aql + bqf2 + qfc(akl + bk2)

+ qc(ai + bi2) (by Lemma 5.3)

l- Q[jfi]w;,.

Hence (xfw, y;-ew;w)e c/W. But Q[j/7] < i, since j < 7. Also, R[j/]
+ Q[j/7]w j and l- Q[j/7]w + Q[j/]w I. Therefore (x{, y)s X so that
P/u X.

XLet ,y)eX. Then there are integers r, s and n such that 0 < n < i,
j r + nt, s + n, and (x, y)e c/W. Let a and b be two integers such that
ai + bi2 g.c.d.(i, i2) 1. Since Pc .c2, then

(X + ha;1 + rib;z, y+nal + nb2) e cI"
But r + na + nb =j and s + na + nb l. Hence (x{,y)ec. Since
0 n < i, we have 0 N j < ui. Therefore (xJi, Y) e Pc/U, so that X Pc/U.

FIG. 5.3. The ACS C2
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In summary, two asynchronous control structures C1--(Gx,I,L and
C2 (G2, e2, L) are equivalent if and only if

(1) ix =jlandi2 =j2forl __< i, j __< L, and
(2) Pcx/w is a generating set for both Pc1 and P2, where w for =< =< L.
Lemma 5.2 can be used to determine whether or not the set Pc 1/w is a generating

set for Pc and Pc2. Hence the design of an algorithm to check for the equivalence
of two control structures, using conditions (1) and (2) above, is straightforward.
To illustrate this procedure, consider the control structures in Figs. 5.2 and 5.3.
We have already seen that condition (1) is satisfied and that Pc x/w is a generating
set for Pc1" Lemma 5.2 can be used to show that Pc l/W also generates Pc2. Hence
the two control structures are equivalent.

6. Summary. In this paper we have modeled a class of asynchronous control
systems with marked graphs. By means of this model, the equivalence problem
has been formulated and solved. In the process, two different marked graph
representations, the signal graph and the behavior graph, were introduced. In this
final section, we compare these two models with previous work in this field.

The signal graph is closely related to the models proposed by Dennis [6] and
Patil [15]. In fact, the method of representing the generation of link signals in the
signal graph is a combination of the techniques used in these two papers. Although
these two models are more general, since conflict can be explicitly represented, the
signal graph is more amenable to analysis. On the other hand, by allowing many-to-
one link assignments, certain types of pseudo-conflicts can be represented with a
signal graph. For example, well-formed networks composed ofWYE, SEQUENCE,
JUNCTION, UNION, and Muller’s SWITCH modules [6], [3], [14] can be
modeled if the UNION condition [1] is enforced by the network itself.

Ordering relations similar to the one represented by a behavior graph have
been studied by Muller [12], [13] and Holt [7]. Indeed, the Hasse diagram of the
partially ordered set of C-states, used by Muller to investigate asynchronous
switching circuits, is constructed in much the same way as the behavior graph.
The major difference is due to the intended application of the two concepts.
Muller used the diagram of C-states to characterize the different types of speed-
independent circuits where the elements of the circuit were arbitrary logical
elements. Moreover, every element is represented by a component of the C-state
and the emphasis is on sequences of states rather than input and output signals.
Since the behavior diagram has been developed to characterize system equivalence,
as seen by the environment of the system, only sequences oflink signals are explicitly
represented.

Holt, on the other hand, models concurrent systems as infinite collections of
occurrence graphs called occurrence systems. For a certain class of systems he
derives the Petri net as a finite representation of the occurrence system. Obtaining
the behavior graph from the signal graph may be viewed as the inverse ofthis process.
Indeed, with suitable interpretations, a generating set of a behavior graph may be
considered as an o-cycle and the corresponding control system as an occurrence
system which is the cd-closure of this o-cycle.

Finally, the behavior graph can be viewed as a formalization and generalization
of the p-nets and section graphs used by Dennis [6], Patil [15], and Bruno and
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Altman [3] to specify the behavior of the asynchronous control modules. In fact,
a nonconditional module can be modeled as an ACS. The graph of a minimal
generating set of the corresponding behavior graph would closely resemble the
p-net for that module. Certain networks of these modules can also be modeled with
an ACS. In this case, a generating set for the behavior graph can be considered as an
extended p-net representation for the network.
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GENETIC ALGORITHMS
AND THE OPTIMAL ALLOCATION OF TRIALS*

JOHN H. HOLLAND,"

Abstract. This study gives a formal setting to the difficult optimization problems characterized
by the conjunction of (1) substantial complexity and initial uncertainty, (2) the necessity ofacquiring new
information rapidly to reduce the uncertainty, and (3) a requirement that the new information be
exploited as acquired so that average performance increases at a rate consistent with the rate of acquisi-
tion of information. The setting has as its basis a set of structures to be searched or tried and a
performance function #: real numbers. Within this setting it is determined how to allocate trials
to a set of random variables so as to maximize expected performance. This result is then transformed
into a criterion against which to measure the performance of a robust and easily implemented set of
algorithms called reproductive plans. It is shown that reproductive plans can in fact surpass the criterion
because of a phenomenon called intrinsic parallelism--a single trial (individual A e ) simultaneously
tests and exploits many random variables.

1. Introduction. There is an extensive and difficult class of optimization
problems characterized by:

(1) substantial complexity and initial uncertainty;
(2) the necessity of acquiring new information rapidly to reduce the

uncertainty;
(3) a requirement that the new information be exploited as acquired so that

average performance increases at a rate consistent with the rate of
acquisition of information.

These problems derive from a whole range of long-standing questions, such
as the following.

How is the productivity of a plant or process to be improved, while it is
operating, when many of the interactions between its variables are unknown?

How does one improve performance in successive plays of a complex game
(such as Chess or Go or a management game) when the solution of the game is
unknown (and probably too complex to implement even if it were known)?

How does evolution produce increasingly fit organisms under environmental
conditions which perforce involve a great deal of uncertainty vis-t-vis
individual organisms?

How can the performance of an economy be upgraded when its mechanisms
are only partially known and relevant data is incomplete?

In each case rapid improvement in performance is highly desirable (or
essential), though the combination of complexity and uncertainty makes a direct
approach to optimization unfeasible. Often the complexity and uncertainty are
great enough that the optimum will be attained, if at all, only after an extensive

* Received by the editors August 3, 1972.

f Department of Computer and Communication Sciences, University of Michigan, Ann Arbor,
Michigan 48104. This research was supported in part by the National Science Foundation under
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period of trial and calculation. Problems of this kind will be referred to here as
"problems of adaptation," a usage similar to that of Tsypkin [8], though broader.

Problems of adaptation can be given a more precise formulation along the
following lines. Let M be the set of objects or structures (control policies, game
strategies, chromosomes, mixes of goods, etc.) to be searched or tried. Generally
a’ will be so large that it cannot be tried one at a time over any feasible time period.
Let # :a’ [ro, r 1], where [ro, r 1] is an interval of real numbers, be a "performance
measure" (error, payoff, fitness, utility, etc.) which assigns a level of performance
kt(A) to each structure A ’. Conditions (2) and (3) above then reduce to:

(2’) Obtain new information about # by trying previously untried structures in

’ (it being assumed that the outcome of trying A a’ is the information
#(A)).

(3’) Assure that/t, the average of the outcomes of the first trials, increases
rapidly whenever the search of a’ reveals an A with #(A) >

With no more formalization than this, a dilemma comes into sharp focus. The rate
of search is maximized when each successive trial is of a previously untried A
On the other hand, repeated trials of any A’ for which #(A’) >/t will increase
more rapidly. In other words, if the rate of search is maximized, the information
cannot be exploited, whereas if information obtained is maximally exploited, no
new information is acquired.

The basic problem then is to find a resolution of this dilemma. The simplest
precise version of the dilemma arises when we restrict our attention to two random
variables 1, 2, defined so that the outcome of a trial of i is a performance
#(i, t). The object then is to discover a procedure for distributing some arbitrary
number of trials, N, between and 2 so as to maximize the expected payoff over
the N trials. If for each i we know the mean and variance (#, ,i) of its distribution,
the problem has a trivial solution (namely, allocate all trials to the random variable
with maximal mean). The dilemma asserts itself, however, if we inject just a bit
more uncertainty. Thus we can know the mean-variance pairs but not which
variable is described by which pair; i.e., weknow pairs(v,) and (#’, ’) but not which
pair describes 1. (This is a version of the much studied 2-armed bandit problem,
a prototype of important decision problems. See, for example, Bellman [2] and
Hellman and Cover [4] .) If it could be determined through observation which of

and 2 has the higher mean, then from that point on, all trials could be allocated
to that random variable. Unfortunately, unless the distributions are nonoverlapping,
no finite number ofobservations will establish with certainty which random variable
has the higher mean. Here the tradeoff between gathering information and exploit-
ing it appears in its simplest terms. Gathering information requires trials of both
random variables, with a consequent decrement in average payoff (because the
average performance of one of the random variables is less than maximal). On the
other hand, premature exploitation of the apparent best random variable, by
allocation of most or all trials thereto, runs the risk of a large loss (because there is
a nonzero probability that the apparent best is really second best).

A procedure for allocating trials between and 2 will be said to optimally
satisfy the conditions (2’) and (3’) if it maximizes the expected performance over
N trials. It should be noted that any increase in the uncertainty, such as not knowing
some of the means or variances, can only result in a lower expected performance.
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Thus a procedure which solves the given problem yields an upper bound on expected
performance under increased uncertainty--a criterion against which to measure
the performance of various feasible algorithms.

In these terms the objective of this paper is two-fold. First, making the natural
extension to an arbitrary number r ofrandom variables determine an upper bound
on expected performance under uncertainty. Second, compare the expected
performance of the general class of algorithms known as reproductive plans (see
Holland [5] and later in this paper) to this criterion. It will be shown that, even
under conditions of maximum uncertainty, reproductive plans closely follow the
criterion. Moreover, reproductive plans can use a single trial to test many random
variables simultaneously, a property designated intrinsic parallelism. Thus,
reproductive plans can exceed the optimum for one-at-a-time testing of random
variables. The latter part of the paper will show how this advantage is attained
and that it increases in direct proportion to the number of random variables r.

2. Defmition of the problem. Several definitions will have to be added to give
precise mathematical form to the problem of searching z’ under conditions (1),
(2’) and (3’). (This is only a partial formalization of problems of adaptation,
sufficient for present purposes--a more complete formulation is given in Holland
[53 .) First of all, let the elements of M’ be represented by strings of length over a
set of symbols X; {al, "", O-k} i.e., each A s’ is represented by (or designates)
a string of symbols (alleles, weights, etc.) 0-i1% 0-,, where % e X;. For simplicity
in what follows, se’ will simply be taken to be the set of strings (rather than the
abstract elements represented by the strings). Let 0-1Dr"" [] designate the set
of all elements of s’ beginning with the symbol 0-1. (For example, 0-10-a0-4, 0-0-20-,
and 0-10-30-3 would belong to 0- am, but 0-20-10-1 would not.) More generally, let any
string of length over the augmented set X U {[]} {0-1, ..., O-k, D} designate a
subset ofs as follows" A e a’ belongs to the subset designated by 3132 6i,
if and only if (i) whenever 6j e E the string A has the symbol 6j at the jth position,
and (ii) whenever 6j [] any symbol from X; may occur at the jth position in A.
(For example, the strings 0-0-0-0-3 and 03010203 belong to []0-1[]0-3 but 0-10-1010-2
does not.) The set of (k + 1) strings defined over E (_J { []} will be called the set E
of schemata;they amount to a decomposition of’ into a large number of subsets
based on the representation in terms of E.

If now there is a probability distribution P over z’, say the probability P(A)
that A z’ will be selected for trial, z can be treated as a sample space and each
schema designates an event on . Accordingly, the performance measure /
becomes a random variable, the elementary event A occurring with probability
P(A) and yielding payoff #(A). Moreover, the restriction #1 of # to a particular
subset is also a random variable, A being chosen with probability
(P(A))/(A P(A)) and yielding payoff #(A). In what follows, will be of interest
only in its role of designating the random variable #1; therefore will be used to
designate both an element of E and the corresponding random variable with
sample space , distribution (P(A))/("Ae P(A)), and values /(A). As a random
variable, has a well-defined average # and variance 0-; intuitively, # is the
payoff expected when an element of is randomly selected (under the distribution
P).
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Using the decomposition of into random variables gives by P and E,
it is possible to formalize the earlier discussion concerning optimal allocation of
trials.

For the 2-schemata case, let n2) be the number of trials allocated to the schema
with the lowest observed payoff rate at the end of N trials. Let q(n2)) be the prob-
ability that the schema with the highest observed payoff rate is actually second best.
(In detail q(nt2)) is actually a function ofnt2), N, (#, a), and (#’, a’); hence the necessity
of knowing the mean-variance pairs.) If/1 is the mean of 1 and ]22 the mean of 2,
then the expected payoff rate for the allocation (N nt2), nt2)) is

1
max(#1,#2)- [(N n2))q(n(2)) + n2)(1 q(n2)))]" I#1 #21 ".

An optimum value for n{2 can be obtained from this expression by standard
techniques. (The development below is somewhat more complicated since, in
general, one cannot guarantee a priori that the random variable with the highest
observed payoff rate at the end of the N trials will have received a predetermined
number of trials by that time.)

Though the derivations are much more intricate, the extension from the
2-schemata case to the r-schemata case is conceptually straightforward. It is
possible to obtain useful bounds on the payoff rate as a function of the total
number of trials, N, together with bounds on the total number of trials which should
be allocated to the schema with the highest observed payoff rate. Because the
upper and lower bounds so obtained are close to one another (relative to N),
the action of the optimal procedure is pretty clearly defined. Using this information
it is possible to define a realizable procedure which approaches the optimum as N
increases.

If the r-schemata must be tested one at a time, it is clear that one can do no
better than the procedure just outlined. If, on the other hand, information about
several schemata can be obtained from trial of a single individual, A , the rate
of improvement could exceed the optimal rate for the one-schema-at-a-time
procedure. It should be remarked at once that, for this improvement to take place,
the information must not only be obtained but used to generate subsequent
individuals (A e ’) for trial---each ofwhich will reveal further information about a
variety of schemata. The second part of this paper studies a specific set of repro-
ductive plans, the genetic plans, which can do just this. It will be shown that genetic
plans follow the general course of the optimal procedure when artificially con-
strained to one-schema-at-a-time searches, but advance much more rapidly when
not so constrained.

3. Optimal allocation of trials. For notational convenience in the 2-schemata
case, let 1 be the schema with highest mean, 2 the schema with lowest mean.
(The observer, of course, does not know this.) Let l)(z, N) be the schema with the
highest observed payoff rate (average per trial) after an allocation of N trials
according to plan z; let 2)(, N) designate the schema with lowest observed rate.
Note that for any number of trials n, 0 <= n =< N, allocated to <2)(, N), there is a
positive probability, q(N- n,n), that 2)(z, N) :/: 2 (assuming overlapping
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distributions). Equivalently, q(N n, n) is the probability that the observed best is
actually second best.

THEOREM 1. Given N trials to be allocated to two random variables and 2,
with means # > #2 and )ariances a, a2 respectively, the minimum expected loss
results when the number of trials allocated 2 is

n*
0.2

2

#1 ]22 In #x #2
0"2 8nnN2

The corresponding expected loss per trial is

tr 2 + In #t #2 N2
l*(N)

( #:)S 8n S

Proof. (Given two arbitrary functions, Y(t) and Z(t), of the same variable t,
"Y(t) Z(t)" will be used to mean limt_ (Y(t)/Z(t)) 1 while "Y(t) Z(t)"
means that under stated conditions the difference Y(t) Z(t) is negligible).

In determining the expected payoff rate of a plan z over N trials, two possible
sources of loss must be taken into account (1) The observed best ()(z, N) is really
second best, whence the N n trials given (t)(z, N) incur an (expected) cumulative
loss [# #2[" (N n); this occurs with probability q(N n, n). (2) The observed
best is in fact the best, Whence the n trials given (2)(Z, N) incur a loss
this occurs with probability q(N n, n). The expected loss I(N) over N trials is
thus

I# #21" [(N n)q(N n, n) + n(1 q(N n, n))].

In order to select an n which minimizes the expected loss, it is necessary first
to write q(N n, n) as an explicit function of n. To derive this function let $2
be the sum of the outcomes (payoffs) of n trials of 2 and let S be the corresponding
sum for the N- n trials of . Then q(N- n, n) is just the probability that
S2/n < S/(N n) or, equivalently, the probability that S/(N n) S2/n < O.
By the central limit theorem, S2/n approaches a normal distribution with mean #2
and variance a]/n; similarly, S/(N n) has mean # and variance a/(N n).
The distribution of S/(N n) S2/n is by definition the sum (convolution) of
the distributions of S/(N n) and -(S2/n); by an elementary theorem (on the
convolution of normal distributions), this is a normal distribution with mean

1 /2 and variance a/(N n) + a2/n. Thus the probability Pr {S/(N n)
S2/n < 0} is the tail 1 O(Xo) of a normal distribution O(x) in standard form

so that

y (/21 /22)
X=

V//(N n)+ a2/n
and -Xo is the value of x when 0.

The tail of a normal distribution is well approximated by

1 e -x2/2
0(-x) 1 O(x) < x/ x
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Thus

q(N n, n) < 1 e -x/2

XO

1 /a2/(g n)-t-
exp-Lrr2/ n)- ’/nJ

(from which we see that q is a function of the variances and means as well as the
total number of trials, N, and the number of trials, n, given 2). Upon noting that
q decreases exponentially as a function of n, it becomes clear that, to minimize
loss as N increases, the number of trials allocated the observed best, N- n,
should be increased dramatically relative to n. This observation (which will be
verified in detail shortly) enables us to simplify the expression for Xo. Whatever
the value of a, there will be an NO such that, for any N > N0, a2/(N n) << a/n,
for n close to its optimal value. (In most cases of interest this occurs even for small
numbers of trials since, usually, a2 is at worst an order of magnitude or two
larger than a .) Using this we see that, for n close to its optimal value,

X0 , (#1 P2)%/ N > NO
0"2

We can now proceed to determine what value of n will minimize the loss l(n)
by taking the derivative of with respect to n:

where

and

dl
dn --11 2[’[-q+(N-n)nn+ 1-q-nnn]
=1# -#1" (1 2q) +(N- 2n)

dq <
dn x xg e_Xg/2 dXO=dn q

+ xoq dXOdn
dxo <#-P2__Xo
dn 2rr2x/ 2n"

Thus

< I#1 #1"dn
1 2q)- (N 2n).q.Xg2n+

n*, the optimal value of n, satisfies dl/dn O, whence we obtain a bound on n*
as follows:

0<(1- 2q)- - 1 .q.(x+ 1)
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or
N 1 2q

1<2n* q.(x + 1)"

Noting that 1/(x + 1) < 1/x and that 1 2q rapidly .approaches 1 because q
decreases exponentially with n, we see that (N- 2n*)/n* < 2/(x)q), where the
error rapidly approaches zero as N increases. Thus the observation ofthe preceding
paragraph is verified, the ratio of trials of the observed best to trials of second-best
growing exponentially.

Finally, to obtain n* as an explicit function of N, q must be written in terms
of n*:

N-2n*
< 2x/a21 [(#1 2)2n*].n* #1-#.-exp

2a
Introducing b (#1 2)/o’2 and N1 N n* for simplification, we obtain

or

In n* 2
n*+ b >.ln

b

where the fact that (N- 2n*) (N- n*) has been used, with the inequality
generally holding as soon as N exceeds n* by a small integer. (To get numerical
bounds on o2 when it is not explicity known, note that for bounded payoff (all
A e s, ro _-< #(A) _<_ r l) the maximum variance occurs when all payoff is con-
centrated at the two extremes. That is,

P(ro) P(rl) 1/2 and ff< 2 12 12
(Tmax (’1 -[- ro) (1/2rl -[- 1/2ro)2 rl ro 2

2
")

We obtain a recursion for an ever better approximation to n* as a function of N
by rewriting this as

n* > b-2 In
L j"

Thus
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where, again, the error rapidly approaches zero as N increases. Finally, where it is
desirable to have n* approximated by an explicit function of N, the steps here can
be redone in terms of N/n*, noting that N1/n* rapidly approaches N/n* as N
increases. Then

b#N2
n* b -2 In [_8 ia

where, still, the error rapidly approaches zero as N increases.
The expected loss per trial l*(N) when n* trials have been allocated to t2)(z, N)

is

1
I*(N) l#, #21" [(N n*)q(N n, n*) + n*(1 q(N n*, n*))]

[#x #21"
V
i
N 2n*
NL--q(N-n*,n*)+n]

E>l#Xb2 #21. 2+In
N

b#N2
87n r2] ] Q.E.D.

The expression for n* (and hence.the one for I*(N)) was obtained on the
assumption that the n* trials were allocated to (2)(z, N). However, there is no
realizable sequential algorithm which can "foresee" in all cases which of the two
schemata will be 2)(, N). There will always be observational sequences wherein
each schema has a positive probability of being (2)(, N) even after has allocated
n > n* trials to one. (For example, r may have allocated exactly n* trials to each
and must decide where to allocate the next trial even though each schema has a
positive probability of being (2)(z, N).) Thus, no matter what the plan , it will in
some cases allocate n > n* trials to a schema (on the assumption that will turn
out to be t)(z, N)) only to be confronted with the fact that (2)(-17, N). For these
sequences the loss will perforce exceed the optimum. Hence l*(N) is not attainable
by any realizable sequential algorithm zthere will always be outcome sequences
which lead z to allocate too many trials to tE)(Z, N).

There is, however, a realizable plan Z o for which the expected loss per trial
l(zo, N) quickly approaches/*(N); i.e.,

Z o initially allocates n* trials to each schema (in any order) and then allocates the
remaining N 2n* trials to the schema with the highest observed payoff rate at
the end of the 2n* trials.

COROLLARY 1.1. Given N trials, Zo’S expected lass, l(zo,N), approaches the
optimum l*(N). That is, l(zo, N) l*(N).
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Proof. The expected loss per trial l(zo, N) for Zo is determined by applying
the earlier discussion of sources of loss to the present case:

1
l(zo,N) ’l#, #21" [(N n*)q(n*,n*) + n*(1 q(n*,n*))],

where q is the same function as before, but here the probability of error is irrevoc-
ably determined after only n* trials have been allocated to each schema; i.e.,

q(n*,n*)-
1 w/aln* + aln exp aTl-i + ,.j

(Note that n* is not being redetermined for ro n* is the number of trials determined
above.) Rewriting/(ro, N) we have

l(ro,N)=,,,-,2l.[N-2n* *)q(n*, n +

Since, asymptotically, q decreases as rapidly as N- , it is clear that the second term
in the brackets will dominate as N grows. Inspecting the earlier expression for
l*(N) we see the same holds there. Thus, since the two second terms are identical,

lim l(r’N)- 1. Q.E.D.
l*(N)

To treat the case of r schemata we need a new determination of the probability
that the observed best is not the schema with the highest mean. To proceed to this
determination let the r schemata be , z,..., and let > z > >
(again, without the observer knowing that this ordering holds).

THeOReM 2. Given N trials to be allocated to r random variables {, 2,’", },
with means > 2 > > and variances a,a2,..., a, respectively, the
minimum expected loss per trial l}(N) is bounded above and below by l}, and l},,
respectively, where

l, (;[ ,)N 8(r 1) In N

and

8t In N2

Proof. We are interested in the probability qt that the average of the observa-
tions of any , j > 1, exceeds the average for 1 that is, the probability of error

qt(Yll, 1%) Pr {( S22 S_) S3 S1 S S1)t.., > or --> or...or -->
/3

When a given number of trials no =2 n has been allocated to 2, 3, "’",

to minimize the probability of error q, that error will clearly be largest if/2 #3. (In other words, when & 2, an allocation of n < n2 trials to
will yield

pr {(Sj S_)} f(S2 S1)t--> <Pr -->
nj n2
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hence for a given number of trials, a greater reduction in qr can be achieved if the
means #j are not all equal.) Moreover, for those cases where 2 #a
the worst case occurs when the largest of the variances a2, aa, ", ar is in fact the
common variance of each of 2,a, "", . Given this worst case,

(a, aa) (,, a,), q will be minimized for an allocation of no trials to
2, "’", , if (as nearly as possible) equal numbers of trials are given each schema
(since each schema contributes equally to the probability of error).

From these observations we can obtain bounds on q,. As before, let

q(nl,n2) Pr( $2 S-xt/,12

When Zi=2 ni (r- 1)m trials are allocated to 2,"", r SO as to minimize
the probability of error, we have

> or >
N (r 1)mtl2 N (r 1)m or

r-l) (r-11
q(N (r 1)m, m)

1
2 q(N (r 1)m, m) + ...,

where the right-hand side is obtained by noting that the events {(Si/ni
> S1/(N (r 1)m)), 2, ..., r} are independent and, under the best alloca-
tion in the worst case, ni m for 2, ..., r, so that

Pr{ Si
N-(r- 1)m

q(N-(r- 1)m,m).

Thus, when (r 1)m trials are allocated to 2, r to minimize the probability
of error, we have the following bounds"

q(N (r 1)m, m) < q,(n n,)

> or or
n2 N (r 1)m n, N (r 1)m

< (r 1)q(N (r 1)m, m).

Using the upper and lower bounds on q, thus obtained, we can proceed to
upper and lower bounds, II and 11 respectively, on the expected loss lN(n2 n)N,r N,r

for N trials"

iilI,,(m) (kt #2)[(N (r 1)m)q + (r 1)m(1 q)] < IN(n2,..., n,) < li,,(m)

I[(N- (r- 1)m)(r- 1)q + (r- 1)m(1- (r- 1)q)],

using the earlier discussion of sources ofloss and the fact that (#1 #2) < ( j)
< P for allj. As before we can determine the optimal value of m for these bounds,
m** and m* respectively, by setting dl/dm 0. Letting q" (r 1)q and q’ q,
we have

dl(i)

dm
dq(i ]t") (N- 2(r- 1)m)-m 2(r- 1)q(+(r- 1) =0.
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Or, noting that 2q(i) rapidly approaches 1, we have

2(r- 1) +2ldm/
qo decreases with m, so dq/dm is a negative quantity. Since dq"/dm (r 1)dq’/dm,
we have dq"/dm < dq,/dm < dq’/dm and

m**
N {dq’’’ -x N 1 [dq’\ -2(r- 1)

+ .-m. =2(r- 1) +2(r- 1)lmm

>
2(r- 1)

+ dm
m*.

That is, (r 1)m**(N) > nop,= ; ni,ol, > (r 1)m*(N). Thus by determining
the optimal m for each of the bounds we obtain bounds on nt, the number of
trials which should be allocated to schemata other than in order to minimize
expected loss.

m* is directly obtained from the previous 2-schemata derivation by using
(r 1)m in place of n and taking the derivative of q with respect to m instead of n.
The result is

b4N2 b4N2
m* b-2 In

8(r 1)2 In N2
b-2 In

8z(r 1)2 In N2

whereN1 N-(r- 1)mnow.
m** is similarly obtained using(r 1)q for q throughout. The result is

b4N2 21n(r 1)
m** b-2 In

8 In N2 m* -t- b2

The corresponding upper and lower bounds on the expected loss per trial are

l,(m**) # baN 2+ln
8rclnN

and

t,(m ( ). b2N 2+ln
8r(r 1)2 In N2 Q.E.D.

4. Allocation of trials by genetic plans. We now have bounds on the best
possible performance (in terms of minimizing expected loss) of any plan which
tests one random variable (schema) at a time. The objective now is to obtain a
measure of the performance of genetic plans in similar circumstances so that a

comparison can be made with this criterion. This comparison will reveal two things
(1) Even when the genetic plan is constrained to test one schema at a time, losses
decrease at a rate proportional to that decreed by the criterion (though, initially,
the plan does not have information about the means and variances required to
calculate an optimal allocation of trials). (2) Intrinsic parallelism (tests of many
schemata with a single trial) is used to advantage by genetic plans, enabling them
to greatly surpass the one-schema-at-a-time criterion. Because both of these points
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came through convincingly under approximations less severe than ",", weaker
approximations will be used wherever they substantially simplify the derivation.

Specifically, let us consider reproductive plans using genetic operators on a
nonincreasing population (i.e., for all t, the average.effective payoff rate of the
population, fi, is 1). Such plans can be diagrammed as in Diagram 1. The genetic
operators, co f, of step 7 are either of the form

co: x --- x

or else

DIAGRAM

1. Select an initial population

’(0) {Aj(O) se, j 1, ..., w}

[Here (0) is selected at random from
according to the distribution P]

2. Sett --0

-4 3. Set j=

4. Determine #(Aj(t)) and substitute a set of

#(A(t)) copies of Aj(t) for A(t) in the
population s(t)

5. Is j= w?

no yes

6. Increase j by 7. Apply genetic operators to all elements of
the (augmented) s(t). [In general, all
individuals in s/(t) will be modified by the
operators]

8. Delete (.’= (A(t)) w) individuals from
s(t) at random [thus reducing s/(t) to its
original size]

9. Increase by
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The intended interpretation is that (pairs of) individuals selected from the popula-
tion /(t) are transformed by the operator into new (pairs of) individuals. The
operators are conservative in the sense that they do not alter the size of the
population. Formal definitions of various genetic operators can be found in
Holland [6], but for the analysis below, it is necessary to know only that (i) arguments
for the operators are chosen at random from (t), and (ii) the conditional prob-
ability o that A , once selected, will be transformed to some A’ , is generally
small and decreases to a value negligibly different from zero as the proportion of
in ’(t) approaches 1.

It should be noted that the reproductive plan modifies the distribution P
(over ) as the number of trials increases. As a consequence the marginal distribu-
tions for the schemata of interest {}, hence the means {#}, may change as N
grows large. However, the central limit theorem holds for sequences ofindependent
random variables with variable distribution as long as they are uniformly bounded.
This condition holds for all schemata when there is an upper bound on performance
(1.u.b.a {#(A)} < ), and we shall proceed accordingly.

THEOREM 3. Given N trials, a reproductive plan with genetic operators can be
expected to allocate Ne trials to the schema (random variable) ) with the best
observed average payoff, where

N,, (>)N’’(0)exp
with () being the average of the logarithms of the observed payoffs for (), N()(0)
being the trials allocated to () at the outset, and no N N(,.

Proof. The increase in the number of instances of schema during step 4
of the plan is given by

(t) Z (A),

whr (t) is th st of instances of in th population /(t). Th instances of
in /(t) constitute a sampl of under th modified distribution P, holding at time t.
Th valu of V(t) can b written in trms of V(t), th xpctd number of in-
dividuals in (t), by using th avrag

d (A)
/(t) A(’)

of th observations of at tim t. In ths trms

(t) ,(t).
We will concentrate here on (typical) reproductive plans wherein the operators

in step 7 are applied to elements of(t) independently of their identity (representa-
tion). As mentioned earlier, the common characteristic of these operators is such
that the conditional probability o of A ’(t) being transformed to A’ (t)
decreases to a negligibly small value as the size of (t) approaches that of (t).
Hence at the end of step 7 we can expect

W(t) (1
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where the factor (1- ot)- as /(t)- w. (This ignores new instances of
formed by the operators from other A (t).) Finally, after the deletions of step 8
(which are again uniform over s/(t)), we expect

ffc(t + 1) ---(1
Pt

since the expected value of the increase, qw__ #(A2(t)), is just fi ,#(A)P(A),
where Pt is the (modified) distribution over at time t. Putting this recursion in
explicit form we get

C(t + 1) - ((It,=o fit, (0)= ff(O)exp [ln
(0)exp [ln (’)1
 (o)e

where/it tier(1 ot)/fit and In (fi’ct,)/t. Using the fact that

f(t’) >__ f(t’) dr’
’=0

for monotone increasing functions, the total number of trials of to time t, N(t),
can be approximated by

Ne(t) - (0) / ff(O) ett’ /(0) -[- /(0) ett’ dr’,
t’=l ’=0

assuming that at each time t, fi’t (the rate of increase of (t)) is in excess of 1.
(It should be noted that this approximation to N(t) assumes $1 - 2 t.
For small t, there may be a considerable error if t,, t’ 1, ..., t, swings over a
wide range, though at worst the error (as a fraction of the true value) will be
considerably less than e -t. Moreover, as increases, St changes more and more
slowly because it is an average, while earlier terms in the sum being approximated
are swamped by the larger later terms. Thus the probability of a given error steadily
decreases as increases.)

S(t) - t/(0)+ 4(0)[ett-^ 1]
Zt

Therefore the total number of trials of a schema increases exponentially as a
function of time (assuming the performance of is consistently better than the
average).

Let (1) be the schema receiving the greatest number of trials over the interval t,
and let (1)(t’) designate the set of instances of (1) present in the population sC’(t’)
at time t’. Let no(t be the total trials allocated to all other individuals {s’(t’)

(l)(t’)} from t’ 0 through t’ t. Since for all t’ the number of individuals in
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(t’) remains constant, the total number of trials N(t) N(O). t. It follows that

no(t N(t)- N,(t) < N(t)
no(O N(O)- N,,,(O)= N(O)

=t.

Hence

..(o)
where t 1)is the observed , for 1). Or

no (<)(no(0)/tl)) In [.(1)N,l,/,t,(0)]. Q.E.D.

The following correspondence allows comparison of this result to the one
obtained earlier for optimal allocation.

N., trials allocated to 1)

n: trials allocated to other schemata

"Optimal" [*]

N1, N

n,=(r- 1)m*

"Reproductive" [p]

Nlo N(I

tlp /’Ip

Thus we have

NI* b
exp

where b (#1 ]22)/’2, vs.

b2n*
+

1 n,

Z( 1)noNip > exp
[_n O) [’

In (/(where (1)
Clearly the two plans behave in roughly the same way, the number of trials

allocated to the "best" in each case increasing exponentially as a function of the
total number of trials allocated to all other schemata. However, a comparison of
expected loss per trial yields much more interesting information. For the reproduc-
tive plan the expected loss per trial is bounded above by

Io" --#1[N lor’q(N lo, n’o) + (1 r’q(Nlo no))no]

where r’ is the number of schemata which have received n’o (or more) trials under the
reproductive plan. It is critical to what follows that r’. no’ need not be equal to no.
Each A e d is a trial of 2 distinct schemata. As (t) is transformed into ’(t + 1)
by the reproductive plan, each schema having instances in (t) can be expected
to have (1 oo,)p/ft instances in ’(t + 1). Thus, over the course of several time
steps, the number of schemata r’ receiving n’o trials will be much, much greater
than the number of trials no allocated to individuals A (where A e but A 1)
even when no approaches or exceeds no. (As a simple example consider a set of
three trials {alalala2, a2alalal, 0"20"20"20"1}. Each of the 6 schemata {a2n=n,
ra rr, rral, nr=al, a2 =tal, ralal t} receives 2 trials, so that for no 2 we
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’. r’= 12 though no is clearly 3 (or less). (See below.) Thishave r’ 6 and no
observation, that generally r’n’o >> no is an explicit consequence of the reproductive
plan’s intrinsic parallelism (each trial of an individual A is a useful trial of a
great many schemata).

THEOREM 4. The ratio of the upper bound on the expected loss per trial for a
reproductive plan, l’, to the corresponding lower bound for optimal allocation,
l,, varies inversely as the number, r, of schemata being tried. Specifically,

(#,,-- #2)2no(0)/,’ 1

2a2() Ir 1

where the parameters are as defined in the statements of the previous theorems.
Proof. Substituting the earlier expressions for Nlo and q(No, n’o) in lo, and

noting that (1 r’q(No, no))no < no, gives

l < --L,tl)bx//#1F" t-Nlp(0)expF()nL.n b2n’ + Inn’]2 +n]"
If b2n’o/2 >= tno/no(O), it is clear that the first term decreases as no increases, but
the second term, no, increases, in other words, if no increases at a rate proportional
to the rate of increase of no the expected loss per trial will soon depend almost
entirely on the second term, as was the case for optimal allocation. Thus, for no
so specified, we can compare losses by taking the ratio of the respective second
terms"

o no
1, (r- 1)m*"

(A quick comparison of the first terms of l and l also shows that the above
condition on no is sufficient to assure that the first term of o is always less than the
first term of l, .) This comparison is conservative in the sense that the upper bound
on the reproductive plan’s losses is compared to the lower bound on the optimal
allocation’s losses.

To proceed, let the reproductive plan’s loss per trial over N trials be compared
to that of an optimal allocation of N trials to the r’-schemata which received no
or more trials under the reproductive plan. (It should be noted that the above
condition on no can be made as weak as desired by simply choosing no(O large
enough.) Substituting the explicit expressions derived earlier for no and m* as a
function of N gives

l < b2no(0) In [()(N no)INto(O)]
l (r’- 1)(ln [b4N2/Sn(r’- 1)2 In N2])(x)"

Simplifying and deleting terms which do not affect the direction of the inequality,
we get

l < b2no(0) In (t )N)
l (r’ 1))[2 In b2N In (8n(r’ 1)2 In N2)]"
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Or, as N grows,

l" b2no(0)( 1

l 2tl r-S-Z-i--1 Q.E.D.

Thus the reproductive plan effectively exploits its intrinsic parallelism--its
losses for a given number of trials N, in relation to an optimal (one-schema-at-a-
time) allocation, are reduced by the factor r’. We can get some idea of how large
this reduction is by looking more closely at the relation between N, no and r’.
This relation in turn is more easily approached if we first look more closely at
schemata. A schema will be said to be defined on the set of positions {jl, "’", Jh}
at which 6ij : r. Given E with k symbols, there are kh distinct schemata defined
on any given set of h =< positions; moreover, no matter what set of positions is
chosen, every A 1 is an instance of one of these k schemata. That is, the set of
schemata so defined partitions , and any distinct set of positions gives rise to a
different partition of. (For example, given the alphabet E {tr 1, a2 and strings
of length l= 4, the set of schemata defined on position 1 is
It is clear that every string in begins either with the symbol al or else the symbol
a2, hence the given set partitions ’. Similarly the set defined on position 2,
{riO’lri, riO’2ri}, partitions , and the set defined on positions 2 and 4,
{ riO" riO’l, ElO’l riO’Z, 1-10"2 ElO" 1, I-IO"21"10"2 }, is still a different partition of sO, a refinement

of the one just previous.) There are distinct ways of choosing h positions
h

{1 <= J < J2 < < Jh <- 1} along a string of length 1, and h can be any number

()= 21distinctpartitinsinducednbetween 1 and I. Thus there are l
by these sets of schemata. It follows that when the reproductive plan generates N
trials, they will be simultaneously distributed over each of these partitions. That is,
each of the 2 sets of schemata (defined on the 21 distinct choices of positions)
receives N trials.

We can get a rough estimate of the number, r’, of schemata receiving no or
more trials by assuming the N trials are distributed uniformly and independently
over each partition. Two factors perturb the estimate" (1) Given a uniform initial
distribution P, the reproductive plan will make the distribution increasingly non-
uniform as no increases. However, until N gets fairly large relative to no the depar-
ture is small enough to make the estimate useful. (2) When a given schema defined
on h positions receives no or more trials, then so must every schemata of which it is a
subset. (For example, let =tr2=tr receive 2 trials, say
These are at the same time trials of rtr2D[], and also of n[]rtr Hence ritr2rr and
==rtr also receive at least 2 trials.) Similarly, if a given schema receives less than
no trials, then so will every schema of which it is a superset. These are clearly
violations of the assumption of independence. Nevertheless, when N is small
relative to k (so that only a small fraction of schemata have been tried), departures
from independence are small enough to allow a useful estimate. Some thought about
the number of dependencies relative to the total number of schemata tried, or a
small Monte Carlo simulation, are convincing in this respect. Though the estimate
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is rough, the value ofr’ obtained for typical values of N, b, 1), etc. is clearly of the
right order of magnitude.

The average number of trials per schema for a set of schemata defined on h
positions is N/kh. Under the assumption of uniform, independent trials, the Poisson
distribution gives the number of schemata receiving no or more trials"

There are ()distinct sets of kh schemata defined on h positions, so that the number

r’ of schemata in E, h 1,..., l, receiving at least no trials is then

kh
N U/kh

This is a very large number as long as no is smaller than N/2, as it always would be
in practice. Even when N is quite small (so that the estimate is good), the number
is substantial. For example, if the representations are of length 32 with two
symbols in Z (so that contains 232 4 x 109 elements) and if N 16 with
no 8, then r’ > 700 schemata can be expected to receive in excess of no trials.
The numbers chosen here are clearly very conservativeif N 32, r’ > 9000 for
and no as given; any increase in produces even more dramatic increases in r’.

The advantages implied by this analysis have been observed in a variety of
computer tests (Bagley [1], Cavicchio [3], Hollstien [7]).

5. Conclusion. Intrinsic parallelism in the search of schemata offers a
tremendous advantage to any optimization procedure which can exploit it.
Reproductive plans with genetic operators (genetic algorithms) are the only
procedures so far studied which exhibit this phenomenon. They have the additional
desirable properties of easy implementation, compact storage and automatic
use of the large amounts of relevant information encountered during operation,
and robustness (efficient operation under maximal uncertainty). For these reasons
it is recommended that genetic algorithms be given serious consideration whenever
a problem of natural or artificial adaptation arises.
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A TECHNIQUE FOR SPEEDING UP LR(k) PARSERS*

A. V. AHOy" AND J. D. ULLMAN

Abstract. We present a new transformation that reduces the size and increases the speed of LR(k)
parsers. This transformation can be applied to all LR(k) parsers including those produced by Knuth’s
and DeRemer’s techniques. The transformation causes the parser to avoid reductions by productions
of the form A B, where A and B are nonterminals.

Key words. Parsing, compiling, parser optimization, LR(k) parsing, single productions

1. Introduction. The LR(k) grammars are the largest known class of
unambiguous context-flee grammars for which deterministic left-to-right (no
backtrack) bottom-up parsers can be mechanically generated. This class of gram-
mars is capable of describing virtually all of the syntax of programming lan-
guages that can be specified by context-flee grammars.

The technique proposed by Knuth [17] for the automatic generation of a
parser for an LR(k) grammar results in parsers that are too large for practical use.
However, new techniques for generating LR(k) parsers have been developed and
these techniques produce parsers of practical size (Korenjak [19], DeRemer [9],
[10], Aho and Ullman [5]).

In this paper we present a new transformation on LR(k) parsers. The effect
of this transformation is twofold. First, it makes a reduction in the number of rows
(states) of a parser even if the parser is produced by one of the new techniques.
Second, it allows the parser to skip many reductions by single productions. (A
single production is a production of the form A B, where A and B are non-
terminals.)

This transformation incorporates into the LR(k) framework the efficiency of
operator precedence parsing (Floyd [123), which also may be construed as ig-
noring reductions by single productions. In practical situations, single productions
often have no significance in the generation of the translation for the input (see,
e.g., Gray and Harrison [14]). For example, in various syntax directed translation
schemes (Lewis and Stearns [20], Knuth [183, Aho and Ullman [33), the trans-
lations of the nonterminal A are often equal to the translations of the nonterminal
B when the underlying production is A - B. Thus, our transformation can be
applied to many parsers without affecting the translation normally performed by a
parser in the process of compilation. Of course, should a single production have
semantic significance, the production can be left intact.

Our principal results are the following. Our transformation can be applied to
any LR(k) parser including the canonical LR(k) parser generated by Knuth’s
method [17] and the parser generated by DeRemer’s simple LR method [10]. For
the latter two parsers, all reductions by single productions can be eliminated if
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the grammar has no more than one single production with a given nonterminal on
the left side. Even if this latter condition is not satisfied, substantial savings in both
time and the number of states are still possible, and we have found realistic situ-
ations where all single productions can be eliminated.

The problem of eliminating single productions in LR(k) parsers was first
posed by DeRemer [9]. A straightforward solution which may increase the size
of the parser is found in Anderson [7] and Anderson, Eve and Horning [8]. Pager
[21] has recently extended our method to an arbitrary LR(k) grammar, but again,
the size of the parser may increase. A technique for eliminating reductions by single
productions in a simple precedence parser was implemented for ALGOL W [-13].

2. Background. In this section we shall review the basic notions of LR(k)
grammars and parsing.

A context-free grammar (grammar) is a four-tuple G (N, Z, P, S), where N
and E are finite disjoint sets--nonterminals and terminals, respectively; S, in N, is
the start symbol, and P is a finite set of productions of the form A , where A is
in N and in (N E)*. We assume the productions are numbered 1, 2, ..., p in
some order.

Conventions. Let G (N, E, P, S) be a grammar.

(i) A, B and C denote nonterminals in N.
(ii) a, b and c denote terminals in E.
(iii) X, Y and Z denote nonterminals or terminals.
(iv) We use u, v, z for strings in E* and 0, fl, 7, for strings in (N 1.3 Z)*.
(v) We use e for the empty string.

If A is in P, then for all fl and 7, we write flAT fl7 and say flAT directly
derives fl7. If 7 is in Z*, then this derivation is said to be rightmost, and we write

flAT fl7. The relations and denote the reflexive and transitive closure of
and respectively. Arrows may be subscripted by the name of the grammar,

to resolve ambiguities.
The language defined by G, denoted L(G), is {wlS w}. It is well known that

if S * w, then S w. That is, every sentence in the language has a rightmost

derivation. A right sententialform of G is a string such that S : . If S Aw
flw, then a prefix of fl is called a viable prefix of G.
Let S 70,71, "’", 7, w be a sequence of right sentential forms such that

for 0 __< < n, 7i ziAiwi, 7i+ ifliwi and A fli is production Pi of G. In this
sequence we say that 7i+1 is reduced to 7i using the production Ai- fli. The se-
quence of productions p,_ lP,-2"" PlPo which can be used to reduce w to S is
called a right parse of w according to G. That is, a right parse is the reverse of the
sequence of productions used in a rightmost derivation. A parsing algorithm (or
parser) for G is a function that maps a sentence in L(G) into a right parse and a word
not in L(G) into an error message.

Convention. Given a grammar G (N, E, P, S), we shall assume from here
on that every symbol X in (N LI E) is useful in the sense that for each X there is
some derivation of the form S : Xfl w. Moreover, if X is a nonterminal that
derives e, then we shall assume that X also derives a nonempty string. If X derives
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only e, we can eliminate X in the obvious way without impairing LR(k)-ness of the
grammar.

We define FIRST(a) as {w[a * wx and either [wl k, or Iwl < k and x e}.
If a is in Z*, then FIRSTk(a) has one member, w, which is either a, if ]a] __< k, or the
first k symbols of a. Note that FIRST(a) is independent of G in this case. We
delete G and/or k from FIRST when no ambiguity arises. Informally, FIRST(a) is
the set of prefixes of length k of the terminal strings derivable from a. If a derives a
terminal string w whose length is less than k, then w itself is included in FIRST(a).

A special case of the FIRST function, which is important in the context of
LR(k) grammars, is EFF, the e-free FIRST function. Formally, EFFk(a) (or
EFF(a) where G and k are understood) is {wla * wx where [w[ k or Iw[ < k and

x e, and the last step in the derivation a * wx, if it exists,2 does not use a pro-
duction of the form A e}.

For example, if G is a grammar with productions S SaSb and S --, e, then
FIRSTI(S) {e, a} while EFFI(S) is empty.

The augmented grammar associated with a grammar G (N, E, P, S) is the
grammar G’ (N U {S’}, Z, P U {S’-, S}, S’) obtained by adding a new starting
production S’ --, S to P where S’ is a new nonterminal not in N U Z.

A grammar G is LR(k) if the two rightmost derivations in the associated
augmented grammar, i.e.,

(1) S’ = aAw aflw,

and

(2) S’ * 7Bx ay

together with the condition FIRST(w)= FIRST(y), imply that 7Bx aAy,
i.e., thata=7, A =Bandx =y.

Informally, a grammar is LR(k) if given a right sentential form, say aflz, where
z could be w or y in (1) and (2) above, we can determine that fl is the string intro-
duced at the previous derivation step by examining only a, fl and FIRST(z).
Moreover, we can uniquely determine that the nonterminal which was replaced by
fl at that step was A.

One consequence of this definition which is not immediately obvious is that
for each LR(k) grammar G (N, E, P, S), we can mechanically generate a deter-
ministic parser that uses a pushdown list (stack) and a finite set of LR(k) tables
as follows. At each step the parser decides whether to shift an LR(k) table on top of
the pushdown list and read another input symbol or to call for a reduction using
one of the productions in P. If a reduction is called for, there will be a string of
LR(k) tables on top of the pushdown list, and this string of tables will correspond
naturally to the right side of the given production. In the reduction this string is
replaced by an LR(k) table.

An LR(k) table is a pair of functions T (f, g) such that:

[fl[ stands for the length of ft.
That is, if is not itself a terminal string.
The term "state" is used in [9],
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(i) f, the parsing action function, maps lookahead strings, i.e., strings in E* of
length at most k, to the actions shift, error, accept, and reduce i, where is the number
of a production in P. The action function decides between shift and reduce at each
step, with alternatives of halting the parse by accepting or declaring an error.

(ii) g, the goto function, maps N E to the set of tables and the word error.
It is essentially the next state function of a finite automaton whose input symbols
are N O Z.

These tables are used to parse input strings as follows. The pushdown list
holds a string of table names,4 say ToT Tm, m >__ 0, where the To is a specific
table, the initial table, and T/= (f, g) for 0 __< =< m.

Let us suppose that w is the unexpended suffix of the original input string and
that we are observing the parser at a time either when m 0, i.e., at the beginning,
or after it has just performed a reduction. We determine the lookahead string u by
finding FIRSTa(w). Then we apply to the lookahead string u the parsing action
function fm associated with Tm. If that action is shift, the next input symbol, say a,
is removed from the input and the table gm(a) is placed on top of the stack. The
pushdown list thus becomes ToT... T,T,,+ where T,,+ g,,(a). In the same
manner, we remove symbols from the input and place tables on the pushdown list, as
long as the action of the current table on top of the pushdown list applied to the
next k remaining input symbols is shift. The actions error and accept have the
obvious meaning.

Suppose that we arrive at a situation in which ToT T is on the pushdown
list and the lookahead string is u, such that the action of T on u is reduce i. Suppose
production is A oz. Then 1 tables are removed from the pushdown list,6 leaving
some table T,, 0 < n <_ r, on top. If T, (f,, g,), then table T g,(A) is placed on
top of the pushdown list, which now contains T0T T,T.

We are now "back where we started," having just performed a reduction.
The process repeats, until either an error or accept action is called for.

Example 1. Consider the grammar G with the productions
(1) SAA
(2) A A
(3) A b

We display a set of LR(1) tables for an LR(1) parser for G in Fig. 1. To is the initial
table. LR(k) tables throughout this paper are shown as rows, with columns for
the arguments off and g. The following code is used for table entries"

x error, a accept, s shift, reduce i.

Each LR(1) table is one row of Fig. 1. For example, if TO is on top of the stack
and a is the current lookahead symbol, then the parsing action called for is to shift
(the "s" entry in the first column of the first row) and to place table Ta on top of the
stack (the sixth entry in the first row). An LR(1) parser using Fig. would parse
the input string abb as shown in Table 1.

Many descriptions of LR(k) parsing place alternating grammar symbols and tables on the stack,
but the grammar symbols are known to be superfluous.

If k > 0, then a is the first symbol of u. If there is no next input symbol, the parser halts and
reports error.

If the length of exceeds the number of tables on the stack, the parser halts and reports error,
but this will never happen if the tables are created by the methods to be discussed.
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Table

Parsing Goto
action function

function
/

g

Lookahead String

X

X X a

x

3 3
X X

x X

2 2
X x

S

X

X

X X

X X

x
X X

3 x
X x
2 x

Grammar symbol

A

X X X

T T T7
Ts T3 T4
X X X

X X X

T9 T6 T7
x x x

x x x

FIG. 1. Set of LR(1) tables

We can construct a parser of this type for each LR(k) grammar G. To do so,
we need to construct a set of LR(k) tables for G. There are several ways of generating
a suitable set of LR(k) tables for G. We shall consider two techniques in this paper
--Knuth’s (canonical) method and DeRemer’s simple LR method.

The canonical set of LR(k) tables can be constructed from G by generating
what we call sets ofLR(k) items. 7 An LR(k) item for G is a pair [A - . fl, u, where
A aft is a production in the augmented grammar, and u is a string in E*, with
[ul -<_ k. Item [A . fl, u is said to be valid for viable prefix if there exists a de-
rivation S’ haw rm 6aflw in the augmented grammar such that 7 ha, and

u FIRSTk(W). Intuitively, if we have just seen some prefix of an input sentence
that can be derived from 7 and [A a.fl, u] is valid for 7, then we will expect to
see next on the input a string that can be derived from flu.

TABLE

Stack Input Parsing action

T abb
shift

ToT bb
shift

ToT3T4 b
reduce by A b

ToT3T b
reduce by A aA

ToT b
shift

ToT2T e
reduce by A b

ToT2T e
reduce by S AA

ToT accept

Items are called "Partial states" in Knuth [17].
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The key to constructing the canonical LR(k) parser for an LR(k) grammar G is
to first construct the sets of valid LR(k) items for all the viable prefixes of G’. The
number of distinct sets of items is clearly finite.

Let d be a set of LR(k) items. The closure ofd is defined to be the least set d’,
satisfying:

(i)d
__

d’;
(ii) If [A .Bfl, u] is in d’, then [B --, "7, v] is in d’, for all B 7 in P and v

in FIRSTk(flu).
The function GOTO(d, X) is defined as follows. Let d be a set of items and

let d’ be the set of items {B X. fl, u]l[B --, . Xfl, u] is in d}. That is, find
all items in d within an X immediately to the right of a dot. d’ is this set of items
with the dot shifted to the right of X. The set GOTO(d, X) is the closure of d’.

LEMMA 1 (from [17], [4]). If d is the set of LR(k) items valid for , then
GOTO(d, X)is the set of LR(k) items valid for X.

ALGORITHM 1 (Constructing the canonical collection). The canonical collection
of the sets of valid LR(k) items for an LR(k) grammar G (N, Z, P, S) can be

computed as follows.
1. Let do be constructed by taking the closure of the single item IS’-. S, el,

where S’- S is the starting production in the augmented grammar, do is called
the initial set of items.

2. Begin with 5 {do }. Apply step 3 until no new sets of items can be added
toSt.

3. If d is in , add GOTO(d, X) to for all X in N U Z, if GOTO(d, X) is
nonempty and not already in 5.

9 is the canonical collection.
Example 2. Let us reconsider the grammar G with the productions

(1) S AA
(2) A A
(3) Ab

We list the canonical collection of sets of LR(1) items (brackets deleted) for G.
The notation B a.fl, Cl/C2/.../cm is short for the items [B - a.fl, Cl],...,
[B .fl, Cm]

S’’S, e

S .AA, e
’o:

A .aA, a/b

A .b, a/b

da: S’--*S., e

S A.A,e

d2 .aA, e

--, b, e

A - a.A, a/b

d3" A -.aA, a/b

A .b, a/b
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15: S AA.,e

Aa.A, e

6" A .aA, e

A.b, e

z7: A b., e

z/8 A aA a/b

’9: A aA., e

For example, ’o is computed by taking the closure of IS’ .S, e]. Since there
is an S to the right of the dot, we add IS .AA, e] to o. Since there is now an item
with A to the right of the dot, we also add [A - .aA, a/b] and [A . b, a/b] to
The second components of the items are a or b since A follows the A immediately
to the right of the dot, and FIRSTI(A)= {a,b}. is GOTO(o,S). [2 is
GOTO(o, A) and is found by taking the closure of {S A.A, e}. This completes
Example 2.

We can extend the GOTO function to strings in (N U E)* in the obvious way.
That is,

(i) GOTO(’, e)
(ii) GOTO(, X) GOTO(, a), X).

It should be clear by Lemma 1 that irAo is the initial set ofitems, then GOTO(’
is nonempty if and only if is a viable prefix to the grammar at hand.

ALGORITHM 2 (Constructing an LR(k) table from a set of LR(k) items). The
following algorithm can be used to construct an LR(k) table T (f, g) from a set
of LR(k) items ’. The parsing action function f is constructed as follows.

1. If [A ., u] is in , and A is not S’ S, then f(u) reduce i, where
is the number of production A .

2. If [A z./, u] is in ,/ # e, then f(v) shift for all v in EFF(/u).
3. If [S’ S., e] is in ’, then f(e) accept.
4. f(u) error otherwise.

If f(u) is not uniquely defined for some u in X* such that lul <_- k, then a parsing
action conflict is generated by ’ and no table is produced for

The GOTO function g is constructed as follows.
5. g(X) is the name of the table constructed from GOTO(, X) whenever

GOTO(a’, X) is not empty.
6. g(x) error if GOTO(a’, X) is empty.
The set of LR(k) tables constructed from the canonical collection of sets of

LR(k) items for an LR(k) grammar G will be called the canonical set of LR(k) tables
forG.

The table constructed from the initial set of items is called the initial table.
It is well known that a grammar G is LR(k) if and only if no parsing action

conflicts are generated by any set in the canonical collection of sets of LR(k) items
for G [17], I5].
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Example 3. The canonical set of LR(1) tables for the grammar of Example 1
was given in Fig. 1.

The canonical set of LR(k) tables for a grammar is often impractically large,
even if k 1. As we have mentioned, several methods of producing smaller sets of
LR(k) tables from an LR(k) grammar have evolved. We consider one of them here,
the "simple LR" method (DeRemer [10]). The next algorithm defines the simple
LR(k) method for the case k 1.

DEFINITION. If G (N, E, P, S) is a grammar, and A is in N, then FOLLOWG(A)
{alS =g eAw and a FIRSTI(w for some e and w}. That is, FOLLOWG(A) is

the set of terminals which may follow A in a right sentential form, with the empty
string e included if A can be the rightmost symbol of a right sentential form. We
delete the G from FOLLOWa when no confusion results.

ALGORITHM 3 (The SLR(1) method). The SLR(1) method of constructing a
set of LR(1) tables for a grammar G (N, E, P, S) can be summarized as follows.

1. Using Algorithm 1, construct 6o, the canonical collection of the sets of
LR(0) items for G.

2. Replace every item of the form [A ft., e] in each set in 5 by [A ft., a]
for all a in FOLLOW(A). Let 5 be the resulting collection of sets of LR(1) items.

3. Using Algorithm 2, construct an LR(1) table for each ’ in 5. The GOTO
entry for table T on symbol X is the table constructed from GOTO(", X), where

" is the set of LR(0) items from which T is constructed.
If no parsing action conflict occurs, then the resulting set of LR(1) tables is

called the SLR(1) set of tables for G and the grammar G is called an SLR(1) grammar.
(Thus, DeRemer’s algorithm forms a definition of SLR grammars.)

If G is an SLR(1) grammar, then the SLR(1) set of tables for G is equivalent in
the sense of [5] and [6] to the canonical set of LR(1) tables for G.

Example 4. Let us again consider the grammar
(1) S AA
(2) A aA
(3) A -, b

of Example 1. The canonical collection of sets of LR(0) items, with ’e" deleted
from each item, is:

S .AA
o"

A .aA

A - b

S A’A

2" A .aA

A ---- b
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A a.A

3" A .aA

A.b

4: Ab.

Ms: S AA.

6: A aA.

The SLR(1) set of tables constructed from these sets of items is shown in Fig. 2.

Table

R
R
R2
R3
R.
R5
R6

x
x x /

x
x

3 3 3
x x
2 2 2

s A

R R R R
X X X X

x R R R4

x R R R4

X X X X

X X X X

X X X X

FIG. 2. SLR(1) tables

We shall now give a formal specification of the LR(k) parsing algorithm.
Let - be a set of LR(k) tables for a grammar G (N, E, P, S). We define the

action of the LR(k) parser using ,Y- in the following manner. The LR(k) parser has
a pushdown list and an input tape. A configuration of the parser is a pair
(ToT Tm, w), where To is the initial table, To, T, T,, are in ,, and w is in
The string To T... T,, represents the pushdown list with table T on top. The
string w represents the unexpended input. Let T (fi, gi) for 0 < _<_ m, and let w
represent the unexpended input. Let T (f,gi) for 0 =<i=< m, and let u
FIRSTk(w be the current lookahead string.

1. Iff(u) shift, and gin(a) T, where w aw’, then we write (TOT1 T,,, w)
-(ToT T,,T, w’).

2. If f(u) reduce i, production is A - and is of length r _>_ 0, then we
write (ToT Tm, w) (ToT Tm_T, w), where T is gm_(A).

3. If f(u) is error or accept, then there is no configuration C such that
(ToT T,,,w) - C.

4. Iff(u) accept, m 1, and w e, then the configuration (ToTx, e) is said
to be the accepting configuration. (It is easy to show that there is only one accepting
configuration.)

An initial configuration of the parser is one of the form (To, w). Let * be the
reflexive and transitive closure of -, and let i be the composition of w- with itself
times. A configuration C such that (T0, w)- *C for some w is said to be accessible.
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A set of tables ,Y- is said to be valid for G if and only if the accepting confi-
guration is accessible from (To, w) exactly when w is in L(G).

It is straightforward to show that the canonical set of LR(k) tables for an
LR(k) grammar G is valid for G. Likewise, the SLR(1) set of tables for an SLR(1)
grammar G is valid for G. If ,Y- is a canonical or SLR(1) set of tables for G, then for
each w in L(G) the sequence of reductions made by the parser using ,Y- is the right
parse for w.

We should note that a grammar G may have many valid sets of LR(k) tables
in addition to the canonical and SLR sets.

3. "Don’t care" entries. Certain error entries in a set of LR(k) tables are
never consulted by an LR(k) parser using. It is useful to distinguish these entries
from those that can be consulted.

DEFINITION. We define essential entries as follows. Let - be a set of LR(k)
tables for a grammar G (N, Z, P, S). Let To be the initial table in -. Suppose
(ToT T,,,w) is an accessible configura.tion of the LR(k) parser using -,
FIRSTk(W u and T/= (f/, gi) for 0 __< __< m.

(i) If f,,(u) error, then f,,(u) is an essential entry.
(ii) Iff,,(u) shift, w aw’ and g,,(a) error, then g,,(a) is an essential entry.

(iii) Iff,,(u) reduce i, where production/isA - ,ll r, and g,,_r(A) error,
then g,,_r(A) is an essential entry.

If an error entry is not essential, then it is a don’t care entry and from this point
will be indicated by q rather than x in an LR(k) table. Intuitively, a don’t care
entry in a set of LR(k) tables is one which may be changed arbitrarily without
altering the action of the LR(k) parser using that set of tables. The following two
lemmas pinpoint which error entries are don’t cares in the canonical and SLR sets
of tables.

LEMMA 2 1-5, [-6. In a canonical set ofLR(1) tables"
(a) All error entries in the goto portion of each table are don’t cares.
(b) An error entry in the action field of table Tis essential ifand only if either T

is the initial table or the goto entry of some table on a terminal symbol.
DEFINITION. We extend the GOTO function to tables and strings of grammar

symbols as follows.
(i) GOTO(T, e) T for all T.
(ii) GOTO(T, X Xm) is that table T’ which is the goto entry on X of the

table GOTO(T, X Xm- 1)"
Some readers may wish to portray the GOTO function as a directed graph

in which there is a path from node T to node T’ that spells out the string
X1X2 X if and only if GOTO(T, XIX2 Xm) T’. The GOTO graph for
the set of LR(1) tables in Fig. 1 is shown in Fig. 3.

Lemma 2 states that if T’ GOTO(T, a) for some terminal symbol a, then
all error entries in the parsing action field of T’ are essential.

We now define a function called NEXT, that will tell us, given a table T in a
set of tables , and a production i, what tables in ,Y- can be on top of the stack
immediately after the LR(k) parser using - has completed a reduce action called
for by T.
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FIG. 3. GOTO graph

DEFINITION. Let T be a table in a set of tables ,- and A a the production
whose number is i. Then NEXT(T, i) is T’ in ,’-] there is a table T" in ,ff such that
GOTO (T", a) T and GOTO(T", A) T’}.

In Example 1, NEXT(T9,2 {T5, T9}. That is, production 2 is A- aA.
T" may be T2 or T6, since GOTO(T2, aA) GOTO(T6, aA) T9. GOTO(T2, A)

Ts, while GOTO(T6, A) T9.
LEMMA 3. In an SLR(1) set of tables -,
(a) All error entries in the gotofield ofeach table in - are don’t cares.
(b) An error entry on input symbol a in the actionfield of table T is essential if

and only if one of the following conditions holds.
(i) T is the initial table.
(ii) There is a table T’ (f’, g’) in - such that T g’(b)for some b in Z.

(iii) There is some table T’ with T in NEXT(T’, i) such that the action of T’ on
a is reduce i. 8

Proof. Part (a) is similar to the proof of Lemma 2 in [5], and we omit it.
Note that as a consequence all errors are detected by the parsing action functions.
The "only if" portion of part (b) follows from the observation that the three ways
listed comprise the only ways that table T can appear on top of the pushdown list
with a as the current input symbol. The proofofthe "if" portion is similar to Lemma
2 in cases (i) and (ii), so we must show that if (iii) holds, then the action entry of T
on a is essential.

Let G (N, E, P, S) be the grammar for which the tables are constructed, and
let production be A - a. Since Tis in NEXT(T’, i), there is some table T such that

This is the only condition which differs from Lemma 2. The reason for its presence is that the
SLR parser can call for a reduction at certain times when the canonical parser declares an error.
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GOTO(T A) T. Let a’ be the set of LR(0) items from which T1 is constructed
by the SLR algorithm. Then a/’x must contain an item with A to the right of the dot,
since GOTO(, A) is nonempty.

We assume that every nonterminal derives a nonempty string, so let
A fl = x, where x e. (fl may be .) Now [A --, .fl, e] must be in ’, since ’has an item with A to the right of the dot and ’1 must be closed.

Next, we infer that since the action of T’ on a is to reduce by production
A - e, a must be in FOLLOW(A). Hence, if B is the last symbol of any step in the

derivation A fl * x, we must have a in FOLLOW(B).
Now we put these observations together. Let ’1 be the set of valid items for

viable prefix 7,and let 7 : w. Then there is some word wxy with rightmost derivation

S : 7Ay = 7fly * d wxy= 7xy

Consider what happens when we attempt to parse wxa. We must, since x - e,
trace out this derivation in reverse, at least until w is reduced to 7. Then, since a is
in FOLLOW(B) for each nonterminal B which is the last symbol of any step in the

derivation A fl * x, we know that x will be reduced to A even if a becomes the
first (and only) input symbol. At this point, T is the table name on top of the stack
and we exercise the error entry of T on input a. We thus have demonstrated this
entry to be essential, and the proof is complete.

4. Eliminating reductions by single productions. A production of the form
A -, B where A and B are nonterminals is called a single production. Productions
of this nature frequently arise when a context-free grammar is used to describe the
precedence lvls of operators in a programming language.

For example, consider the following grammar Go for arithmetic expressions
containing the binary operators + and *. We assume * has higher precedence than
+, meaning that a + a * a is to be interpreted as a + (a a) rather than (a + a) * a.

Go ({E, T, F}, {a, +, ,, (,)}, P, E), where P is
(1) E E + T
(2) E T
(3) T--. T , F
(4) T F
(5) F - (E)
(6) Fa

We can think of the nonterminals E, T and F generating expressions on different
levels reflecting the precedence levels of the operators. E generates the first level of
expressions. These are strings of T’s separated by +’s. The operator + is on the
first precedence level. T generates the second level of expressions consisting of F’s
separated by *’s. The third level of expressions are those generated by F, and these
we can consider to be the primitive expressions.

When we parse the string a + a * a according to Go, we must first parse a * a
as a T before combining this T with the first a into an E.

The only function served by the two single productions E --, T and T F is
to permit an expression on a higher level to be trivially reduced to an expression
on a lower level.
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Some programming languages have operators on twelve or more different
precedence levels. If we are parsing according to a grammar that reflects many pre-
cedence levels, the parser will often make long sequences of reductions by single
productions. We can speed up the parsing process considerably if we can eliminate
these sequences of reductions.

Moreover, in most practical cases, single productions of this nature have no
"semantic significance". That is, in syntax directed translation schemes as in [3],
[18], or [20], when the underlying production is of the form A B, the translations
of A on the left are often equal to the translations of B on the right. Thus, as far as
the output of a compiler is concerned, it does not make the slightest difference
whether the parser physically makes the reduction or not.

We shall now show how we can modify a set of LR(k) tables so that the LR(k)
parser using this set of tables can avoid making reductions by some single pro-
ductions. Let .Y- be a set of LR(k) tables. We say two tables Tand T’ disagree in an
entry if they have different non-q values for that entry.

Suppose that an LR(k) parser using a set of tables - is in a configuration in
which the two tables TT2 are on top of the pushdown list (with T2 topmost).
Suppose that table T2 calls for a reduction by production A ---, B in certain of its
parsing action entries. Finally, suppose that the goto of table T on A is T1 and that
T1 and T2 never disagree except in those action entries where T2 calls for a reduc-
tion by A B.

If we don’t care whether the reduction of B to A is actually carried out or not,
we could then create a new table T’I, which agrees with T1 when T2 calls for a reduc-
tion by A B, and agrees with whichever of T or T2 is no0 q otherwise. T’a becomes
the goto of table T on both A and B, and replaces T everywhere (which it may
legitimately do, since it differs from T only where T is q). As a result, T2 never
appears on top of T in the stack.

If we can do this modification for each table T which can appear below T2 on
the stack, then we have effectively eliminated T2, since it will never be placed on
the stack. Moreover, we have saved the time necessary to replace T2 on the stack
when it calls for a reduction by A B.

We show that it is possible, in this way, to eliminate sequences of reductions
by single productions. Substantial savings, both in number of tables and in com-
putation time, are possible in parsers for practical grammars.

ALGORITHM 4. Let Y- be a set of LR(1) tables for grammar G (N, Z, P, S),
and suppose A B is a single production in P whose reductions we want to avoid.
Let T be in -, with GOTO(T, A) T1 and GOTO(T, B) T2. Let T1 (f, g ),
T2 (f2, g2), and suppose that the following conditions hold.

(i) If g(X) 4: q and gz(X) 4: q, then g(X)= gz(X).
(ii) Iffa(a) 4: q and fz(a) is neither q nor reluee i, where production is A - B,

then f(a) fz(a). That is, T and T2 may disagree only where f2 is reluee i.
Now modify T1 by the following rules:
1. Set f(a) equal to fz(a) whenever the latter is not q or reluee i.
2. Set g l(X) to gz(X) whenever the latter is not o.
3. Then, modify T by setting its goto on B to Ta.
Algorithm 4 causes the LR(k) parser to avoid reductions by A B that were

called for by table T2 in those cases where table T is below T2 on the stack. To see
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Table + E T F +

FIG. 4. SLR(1) tables

this, let us consider the effect of Algorithm 4. If the q’s truly represent don’t cares,
then the modified T can substitute for T2, and the only change in the parser’s
action will be that T will not call for areductionbyA Bwhere T2 wouldhave done
so. But since Tappears below T1 on the pushdown list in every situation where T
substitutes for T2, we know that after T2 called for a reduction by A B, T would
replace T2 anyway. Thus, the only effect of Algorithm 1 is that a reduction by A --, B
has possibly been omitted.

Example 5. Let us consider the grammar Go introduced at the beginning of 4.

Go is SLR(1), and the SLR(1) set of tables with q’s indicating all don’t cares is
shown in Fig. 4.

The single productions are (2) E T and (4) T --, F. The only table calling
for a reduction by (4) is T3. The tables which can appear below T3 on the stack are
To, T4 and T6, because these are the tables U for which GOTO(U,F)= T3.
Since GOTO(To, T)9 GOTO(T4, T) T2 and GOTO(T6 T) T9, we should
compare T3 with both T2 and Tg. Since all actions of T3 are q or reduce 4, and all

Table + E T F +

x x x x
q) q9 q x a

q9 2 q9 2 2
X X X X

X 6 6 X 6 6
X X X X

X X X X

qo q9 q9 x
q9 q9

qo 3 3 q9 3 3
x 5 5 x 5 5

FIG. 5. First modification

DO not confuse the subscripted table names, e.g., T0, with the nonterminal T which stands for
"term."
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goto entries are (p, the conditions ofAlgorithm 1 are met, and in fact, no modification
to T2 or T9 is needed. We may thus replace T3 by T2 in the goto of To and T4 and
replace T3 by T9 in the goto of T6. Since T3 no longer appears in any goto, it may
be eliminated. The resulting tables appear in Fig. 5.

Now let us turn our attention to T2, which calls for a reduction by production
(2), E T. After such a reduction, either T or Ts could be the next table on top of
the stack, and we must compare T2 with these. On input *, the action of T2 is shift,
so we must check that T and T8 have q9 there, which they do. We than replace the
entries of T1 and T8 on * by shift. Also, the goto of T2 on * is TT, so we must
check that the goto entries of Tx and T8 on are qg, which we already know. These
entries are replaced by TT. Then, the T2 entries in the goto ofTo are replaced by T and
those of T, are replaced by T8. It is now possible to eliminate T2. The resulting set of
tables is shown in Fig. 6, and Example 5 is complete.

Table + E

r X X X X r
T q9 qo x a
T4 x x x x T
T x 6 6 x 6 6
T x x x x

r x x x x q
T q9 s q9 x
T 99 q

Tlo q9 3 3 (p 3 3

T q 5 5 x 5 5 q

T F +

tp q9 q9 T T t# Tll

FIG. 6. Second modification

We could also treat production (6) F --, a as a single production and eliminate
table T from Fig. 6 (because tables T Ts, T9 and Tt 0 are all compatible with Ts).
However, it is possible that production F a is important when translation is done,
so we might not want to make this elimination.

There is another simplification that is now possible in Fig. 6. The goto columns
for E, T, F (and a if we had eliminated table Ts) are compatible and could be
merged into a single column without affecting the behavior of the LR(1) parsing
algorithm using this set of tables.

It should be observed that Go is an operator precedence grammar. It has been
shown that for each operator precedence grammar, we can build an LR(1) parser
with one column for the goto entry on all nonterminals (El Djabri [11]). However,
this parser may not detect errors at the same point on the input that the canonical
or SLR parsers do. In the case of Go, we can obtain the parser of [11] using our
transformation eliminating single productions and then merging the columns for
nonterminals. Thus, no postponement of error detection occurs for Go.

We do not believe that any general result along these lines can be shown.
However, experiments with a small sample of practical grammars indicate that
often there are several groups of mutually compatible goto columns for nontermi-
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nals. If there are k such groups we conjecture that we can regard the grammar as
being k operator precedence grammars interacting in a simple way.

5. Eliminating single productions from canonical tables. In Example 5 we saw
that Algorithm 4 completely eliminates reductions by single productions from the
SLR(1) tables for Go. This is no coincidence, as we shall presently show. In this
section we shall concentrate on the canonical set of tables and show that they can
always be modified by Algorithm 4 so that all reductions by single productions are
eliminated, provided no nonterminal has more than one single production. The
proof depends on showing that, in this case, T1 and T2 in Algorithm 4 can never
disagree. In the next section we will prove the same result for SLR(1) sets of tables.

The first lemma shows that there can be no conflict in the goto fields of T and

T2 of Algorithm 1.
LEMMA 4. Let G (N,Z,P,S) be an LR(1) grammar such that A A2

A, B is a derivation of single productions for n >__ 1. Let s/1 and 1/2 be
the sets of valid LR(1) items for viable prefixes 7A and 7B, respectively. If
[C .Xfl, a] is in ’1 and [D ’. Yfl’, b] is in 2, then X Y.

Proof. Suppose X Y, and let Y = c6 for some 6.1 If the last step in this

derivation does not use some production of the form E e, then c is in EFF(Yfl’),
so the action of the table T2 constructed from ’2 must be to shift on c. If the de-
rivation Y = c7 does use E - e at the last step, then the action of T2 on c must be
to reduce by E - e (i.e., [E ., c] is in 2)"

Now let us consider the item [C - .Xfl, a] in ’1. First suppose e - e. Then
e ends in A by the definition of valid item, i.e., -elA1 for some 1. Since
[C - e.Xfl, a] is valid for yA 1, and c is in FIRST(Xfla), it follows that [A, --. B., c]
is valid for 7B. But then, the action of T2 on c should be to reduce by A, B. We
have a contradiction of the LR(1)-ness of G in the case

Now suppose e e. Then in order for [C .Xfl, a] to be in ’1, there must.
be some item of the form [D --. e"A .Ffl", d] in ’1 such that F = Cw for some w.

But since c is in FIRST(Xfla), we must have c in FIRST(Ffl"d), and so again we
conclude that [A,- B., c] is in T2. As in the previous case, we contradict the
LR(1)-ness of G, and so we may conclude the lemma.

LEMMA 5. Let G (N, E, P, S) be an LR(1) grammar in which A
B is a derivation of single productions, n >__ 1. Let 1 and /2 be the sets of valid

LR(1) items for viable prefixes 7A and 7B, respectively. Suppose [C - a.fl, a] and

ID - "fl’, b] are in ’1 and s/2 respectively, where [D - a’.fl’, b] is not [A, - B., b].
Then EFF(fla) EFF(fl’b) is empty.

Proof. Suppose c is in EFF(fla) 0 EFF(fl’b). Then the action on c of the table
constructed from ’2 is to shift if fl’ ve e and to reduce by D - ’ if fl’ e. As in
Lemma 4, we can argue that there must be an item IF2 61A bE, d] in ’1 (the
case in which this item is [C - .fl, a] is not ruled out) such that c is in EFF(bd).
Thus, there is a right sentential form yAlcw for some w. We may conclude that
A, - B., c] is valid for 7B, so the action of the table for ’2 on c should be to reduce

Recall that we are assuming that if Y is a nonterminal, then it derives at least one nonempty
string.
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by A, - B. We therefore have two "correct" actions for this table, and G is not
LR(1).

Since an LR(k) grammar is unambiguous [17, 4, we can find an ordering
of the nonterminals A 1, A2, .", Ar such that if Ai Aj is a single production,
then < j. (That is, if such an ordering were impossible, there would be some
nonterminal A which derived itself in one or more steps, and the grammar would
be ambiguous.) We can give an algorithm which uses such an order to apply
Algorithm 4 repeatedly.

ALGORITHM 5. Let - be a set of LR(1) tables for grammar G (N, E, P, S)
and let A 1, "’", Ar be a linear order on N such that irA Aj is a single production,
then < j. Then for j 1, 2, -.., r in turn, do the following.

Find pairs of tables T and T2 such that A A.i is a single production, and
for some table T, GOTO(T, Ai) T and GOTO(T1, A) T2. If T and T2 can
be merged by Algorithm 4, do so.

We shall now show that Algorithm 5 succeeds in eliminating all single pro-
ductions in an important special case. We suspect that Algorithm 5 is quite good
for eliminating single productions in the general case.

THEOREM 1. Let Algorithm 5 be applied to the canonical set of tables for an

LR(1) grammar G (N, Z, P, S) 11 in which no nonterminal has more than one single
production. Then after application of Algorithm 5, no tables calling for reductions
by single productions remain.

Proof. A straightforward induction on the number of applications of Algo-
rithm 4 shows that at all times during the execution of Algorithm 5, each table is
the result of the merging by Algorithm of a set of tables U1, .-., U,, (the case
m 1 is not ruled out) such that there is a string 7 and nonterminals Ai,, ...,
with the following properties.

(i) U is the table constructed from the set of valid items for 7Aij.
(ii) For 1 j < m, there is a single production Aij
Thus, let T1 and T2 be subject to a possible application of Algorithm 4 when

considered by Algorithm 5. Let T1 be the result of merging U1, "-, U,, and let
and the Ai’s be as above. By the order in which Algorithm 5 considers nonterminals,
T2 cannot be the result of mergers, but must be constructed from the set of valid
items for 7B, for some B. There must be some j such that Ai. B is a single pro-
duction and by the hypothesis of the theorem and the order in which Algorithm 5
considers the nonterminals, we must have j m.

As a consequence, we have Ai, *= B for < < m, and T2 can be merged with
any of U, ..., U,, by Lemmas 2, 4, 5 and the definition of canonical tables. Thus,
T2 can be merged with T1. Since T1 and T2 are arbitrary candidates for merger, we
have shown that every T2 which reduces by a single production is eliminated, and
the proof is complete.

6. Eliminating reductions from SLR tables. The same techniques used to
eliminate reductions by single productions from canonical tables can be used for
this purpose on SLR tables. Except in one case, the ideas are analogous to those

11 Recall that here and throughout the paper we assume a grammar has no nonterminal which
derives only the empty string.
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of the previous section and we shall merely sketch them. The next two lemmas
are analogous to Lemmas 4 and 5.

LEMMA 6. Let G (N, E, P, S) be an SLR(1) grammar, and let s and 2 be
the sets of valid LR(O) items for 7A1 and 7B, respectively. Also, let A1 A2 =

A, B be a derivation of single productions, n >= 1. If C - .Xfl, e] 12 is in 1
and [D ’. Yfl’, e] is in s/2 then X 4: Y.

Proof. The proof is analogous to Lemma 4. We omit the details.
LEMMA 7. Let G (N, , P, S) be an SLR(1) grammar. Let s and s’2 be the

sets ofLR(O) itemsfor 7A and 7B, respectively, where A A2 = = At B is a
derivation of single productions, n >= 1. Let TI and T2 be the tables constructedfrom
s’ and s’2 by the SLR(1) method. Suppose that the action ofT on lookahead a is not
(p. Then the action of T2 on a is reduce i, where production is A, - B.

Proof. First, we observe that if the action of T on a is not (p, then a is in
FOLLOW(A1). The proof is straightforward if that action is shift, reduce or
accept. The case in which the action is an essential error is covered by Lemma 3,
when we note that T cannot be the goto of some other table on a terminal symbol,
since it comes from the set of valid items for an item ending in a nonterminal.
That is, case (b)(iii) of Lemma 3 must pertain. This implies that reduction to A
occurs in some tables on input a. Consequently, a must be in FOLLOW(A1) by
the SLR construction rules.

By an argument used in Lemmas 4 and 5, since the set ofLR(0) items for 7A is
nonempty, it follows that [A, B., e] is valid for 7B. Since a is in FOLLOW(A 1), it
must be in FOLLOW(A,), whereupon the action of T2 on a must be reduce i, and
the proof is complete.

THEOREM 2. If Algorithm 5 is applied to the SLR(1) tables for SLR(1) grammar
G, and no nonterminal of G has more than one single production, then all reductions
by single productions are eliminatedfrom the tables.

Proof The proof parallels that of Theorem and is a straightforward con-
sequence of Lemmas 3, 6 and 7. We omit the details.

7. Effect of the transformation. There are two potentially beneficial effects
of our transformation. First, it reduces the number of rows in the parsing table.
Let us consider the generalization of Go, that is, a grammar such as the following.

Ei- EiOiEi+ for __< < n

Ei - Ei +
E, (E)

En.-a
representing expressions with operators (0i’s) on n precedence levels. The SLR(1)
parser has 3n + 3 rows, of which n are deleted if we apply Algorithm 2. This
gives a potential savings of 1/3 the rows as n becomes large.

However, the parsing table produced by Algorithm 5 has a higher density of
entries which are neither error nor (p than does the canonical or SLR parser.
Various formating techniques, e.g., [16], have been developed to condense the
information in the parser. From experiments, it appears that increasing the density

12 Recall that the second part of an LR(0) term must be e.
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of information in the parser counteracts the shrinkage of rows, with the effect that
the formatted parsers are of roughly the same size with or without elimination of
single productions [1].

The second effect of the transformation is a parser speedup. If we consider the
grammar for expressions with n precedence levels given above, we see that for
large n, about half the productions are single productions. Thus, one might suspect
speedup by a factor of 2 if the parser spends most of its time working on expressions
or expressionlike constructs. However, since in practice short expressions occur
more frequently than large ones, it is reasonable to expect that the single productions
will receive more than their share ofuse. In fact, experiments at Toronto have shown
that the parser for XPL is sped up about 21/2 times using our technique [15].

8. An observation regarding non-LR grammars. It is interesting to observe
that the parsing table of Fig. 6, with the columns for E, T and F merged, can be
obtained in an entirely different manner, a manner which suggests that it may be
advantageous to consider the construction of LR-like parsing tables from non-LR
or even ambiguous grammars.

Let us define the skeletal grammar for a grammar G (N, Z, P, S) to be the
grammar G ({S}, Z, P’, S), where P’ consists of the productions of P with
each instance of a nonterminal replaced by S. However, we do not place S - S in
p’.

Example 6. The skeletal grammar Go for Go has the productions
(1) EE + E
(2) E E * E
(3) E (E)
(4) E a

This grammar is not LR(1), in fact it is ambiguous. However, we can construct
sets of items for Go exactly as if it were SLR(1). The sets of LR(0) items for Go are
listed below.

E --, (.E)

E’E+E
E-.E* E
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’3: E a

E-E +.E

E’E+E

4: E-.E*E

E - .(E)

E.a

EE*’E

E’E+E

t’5: E - E * E

E --, .(E)

E.a

E (E.)

" ;E.+ E

E.,E

E-E+E.

" --,E.+ E

E,E

EE,E.

s’s" E.+ E

E.,E

’9: E-,(E).

In Gso we find FOLLOW(E’)-- {e} and FOLLOW(E)= {e, +,*,)}. If we
attempt to construct a parsing table, we find conflicts in sg’7 and s’s for inputs +
and *. However, if we recall that Go is an operator precedence grammar designed to
force to take precedence over + and for both * and + to associate from the left,
we can correctly resolve the conflict in ’7 by calling for reduction by E E + E
when the lookahead is + and by shifting on lookahead * or +. If we do this, we
may construct the parsing table of Fig. 7, where row R is constructed from
It is easy to see that Fig. 7 is equivalent to Fig. 6 under the correspondence shown
in Fig. 8, provided that we

(i) merge the columns for E, T and F in Fig. 6,
(ii) replace (p’s by x’s in Fig. 6, and

(iii) change to error the goto entries for Rv on + and R8 on + and in Fig. 7.
It is easy to show that these entries are never exercised.

Since Go happens to be an operator precedence grammar, the above relation-
ship should not be surprising, especially in the light of [11]. Moreover, while a
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R
R1
R2
R3
R4
R5
R6
R7
R8
R9

Action

+

X X X X

X X X a

x x X x
x 4 4 x 4 4

x x X x
x x x x

X X X

X X

X 2 2 X 2 2
X 3 3 X 3 3

R
x

R

Goto

x x R x

R4 R x x
x x R x
X X X X

X X R= x
x x R x
R4 R x R
R R x x
R, R x x
X X X X

X X

R7 R3
R8 R3
x x
x x
x x
x x

FIG. 7. SLR tablesfor Gso

Fig. Fig. Fig. Fig.

To Ro

T R
T R
T6 R4
T7 Rs
Ts R
T9 Rv
Tlo R8
Tll R9

3 2
5 3
6 4

(a) row names (b) productions

FIG. 8. Correspondence between Fig. 6 and Fig. 7

general theory has not yet emerged, some techniques for automatically generating
LR-like parsing tables for ambiguous (and hence non LR) grammars have been
developed and are reported in Aho, Johnson and Ullman [2]. It is interesting to
conjecture that the technique developed in the present paper can be subsumed
under the methods [2] or more general techniques for working directly from
ambiguous grammars.
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TRANSPOSITION GRAPHS*

PHILLIP J. CHASE?

Abstract. The transposition graph G(pl, , Pk) is a regular graph having as vertices all sequences
of Pl H- -F Pk symbols, of which pl are of kind 1, ..., Pk are of kind k. Two vertices are adjacent if
transposing a pair of different symbols in one gives the other. We justify CACM Algorithms 382 and 383,
which generate Hamilton paths in G(p,..., Pk)" The main result is that G(p,..., Pk) is Hamiltonian.

1. Introduction. For k >= 2, let P l, "", Pk be positive integers and let
n P + + Pk. Let (01, ..., Ok), where 01,..., Ok are distinct symbols.
When the symbols need to be explicit, we often take t# (A, B, C, ...) or q (0, 1).
Let V V(pl,’", Pk) be the set of sequences x (x 1,’-’, x,) for which P
of the x are 01, "", Pk of the x are 0k. If n is a permutation of {1, 2, ..., n},
then n’V- V according to n(xl,..., x,)= (x(1),..., x(,)). For each xe V,
p(x) is formed by replacing the subsequence of symbols 0 by (1, 2, ..., Pk)" For
example, p(CAACCB)= 1AA23B.

The transposition graph G G(pl,..., Pk) has vertex set V(pl,..., Pk)"
For s and in V, {s, t} is an edge of G if s 4: and if there exists a transposition z
such that z(s) t, in which case z is unique and z(t) s. Each vertex of G is seen to
be adjacent to exactly 1/2In 2 (p + + pk2)] other vertices; that is, G is regular
of this degree. The kernel graph H H(pl,..., Pk) is a subgraph of G with the
same vertex set, but with fewer edges. {s, t} is an edge ofH if it is an edge of G, and
if for the transposition z such that z(s) t, we have pz(s) zp(s). This means that
z leaves invariant the order of the symbols of kind k. H is regular only when
pk 1.

In Fig. 1, solid lines are edges of H(2, 2) (hence of G(2, 2) also), and dotted lines
are the remaining edges of G(2, 2).

In 1964, Donald E. Knuth [3] found an algorithm to generate, in G(p, q) (the
case k 2), an exhaustive linear listing of vertices, without repeats, such that
vertices adjacent in the listing are also adjacent in the graph. Such a listing is called
a Hamilton path. Independently, Leo W. Lathroum [4] found another in 1965.
The methods of Knuth and Lathroum are discussed in 2. Edward P. Neuburg
brought Lathroum’s work to the author’s attention, and this led to CACM
Algorithms 382 and 383 ([1] and [2]).

i0011010
x,\ //

" x.
0011

FIG.
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Algorithm 382, named TWIDDLE and justified in 2, is an ALGOL procedure
which, by following a Hamilton path in H(p, q), provides economy either (1) in
generating all combinations of size q from { 1, 2, ..., n}, or (2) in generating all
binary sequences (b l, "", b,) containing p O’s and q l’s. Since the path is in H,
as opposed to G, adjacent combinations (cl,..., cq), c < < cq, turn out to
differ in just one component. Under usage (2), adjacent binary sequences differ
by a transposed 0 and 1. Algorithm 383, named EXTENDED TWIDDLE and
justified in 3, essentially generates a Hamilton path in H(p,..., Pk).

Our principal result, in 4, is that H(pl,..., Pk), hence also G(p,..., Pk),
is Hamiltonian except for H(1, q) with q > 1. Even then, G(1, q) is Hamiltonian.
Recall that a graph is Hamiltonian if it has a Hamilton circuit, which is a Hamilton
path in which also the first and last vertices are adjacent in the graph.

Figure 2 shows H(1, 1, 2). The numbering of the vertices exhibits a Hamilton
circuit.

ACBC BCAC

ACCB BCCA

CACB = CBCA

CCAB CCBA

FIG. 2

2. The case k 2. A p, q signed sequence s is a sequence of n p + q
symbols of which p are signs, + or The other q are numbers, giving the sub-
sequence 1, 2, ..., q. The set of all such signed sequences is denoted by V’(p, q).
The map cz:V’(p, q)---, V(p, q) replaces every sign by 0 and every number by 1.
Thus (12- + + 3 + -4- -t-) is equal to 11000100100. The map
7: V’(p, q) -, V’(p, q) reverses signs, so that, for example, ?(12 + + 3 + 4 +)
equalsl2+ 3- -t-4+

Certain intervals in a signed sequence are called blocks. They are of two types.
An R(ight)-block is a nondegenerate interval of + ’s which is followed by a number
but which is not preceded by a +. An L(eft)-block is a nondegenerate interval of
signs of which the last, and only the last, is a -, and which is preceded by a number.
The blocks in an example are as follows:

+ 12- + + 3+ + -4+.
L R L

The sequence + 2 + + has no blocks at all. Blocks can never overlap.
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The successor of a p, q signed sequence s which has blocks is a p, q signed
sequence (7(s) obtained as follows. Find the leftmost block in s. If it is an R-block,
then slide the entire block one place to the right, putting the displaced number in
the place vacated by the block’s leftmost sign. If it is an L-block, slide it one place
to the left, and put the displaced number in the place vacated by the block’s
rightmost sign. In either case, if a sign slides, then the next sign to the left (there
may be intervening digits), if there is one, changes.

Example. Here each sequence is the successor of the sequence immediately
above. The leftmost blocks are underlined.

+++12 1-+2+

1--+2 -1+2+

-1-+2 +12++

+-1+2 1+2++

+ + 12+ 12+ + +

Immediate and important observations about a are:
(i) (7 preserves the subsequence of numbers,

(ii) a(s) and (s) are adjacent in H.
Also, if (Ti(s) for some i, then s and (t) determine t. For, if in (t), the jth 0
(j 2, ..-, p) is displaced an odd (resp. even) number of places from its position
in (s), then the (j 1)st sign is different (resp. the same) in and s. The pth signs
of s and must be the same. Similarly, and (s) determine s. If the signs of s and
in V’(p, q) are in this relation, then s and are called consistent, and this is clearly
an equivalence relation.

Let s have at least one block, the leftmost being I. Then (7 transforms I into
an interval I’ of (7(s). 7 applied to (7(s) transforms I’ into a interval I" of 7(7(s) which
turns out to be the leftmost block of 7(7(s). I" is an R-block or an L-block according
as I is an L-block or an R-block, respectively. This gives the following lemma.

LEMMA 1. If (7(s), then s ?(77(t) (7-(t).
A related result is the following.
LEMMA 2. Every succession ?#(s), /(TJ-I(s), "’", /(7(S), ’(S) is generated by

(7, i.e., (7(7(7i) 7(7
i- for 1,..., j.

It turns out that every succession s, (7(s), (7(s), leads to a sequence
without blocks, which is therefore called terminal. By Lemma 2, the succession

beinnin with /(t) is at least as lon, so we call sequences of the form y(t) initial.
The initial p, q sined sequences are exactly those of the form (signs) 2 q(- ),
a + b p, where, of the first a signs, the last must be + (provided a > 0). The
initial 2, 2 sequences are + + 12, + 12, + 12-,and 12- In cneral,
they number 2p.

THEOREM l. If s is an initial p, q sequence, then the succession s, (7(s), (72(S),
eventually ends with a terminal sequence. The corresponding succession (s), (7(s),
(72(s),... is a Hamilton path in H(p, q).
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Proof We proceed by induction on n p + q, the desired conclusions being
clear for n 2. The last term of s is either the sign or the number q. Suppose it is
q. Then s s’q where s’ is an initial p, q sequence. Until q is affected, ri(s’q)
will be tri(s’)q. By induction, therefore, beginning with s’q, and successively applying
tr, we eventually reach a t’q, where t’ is terminal, such that the corresponding
images under e are a path T in H(p, q) containing all sequences with a terminal 1.
Then tr(t’q) u’+ where u’ must be an initial p 1, q sequence. By induction, as
before, tr leads eventually to a v’ + where v’, hence also v’ +, is terminal, and where
the respective images under e are a path T2 in H(p, q) containing all vertices with a
terminal 0. Together, T and T2 give a Hamilton path in H(p, q). The case s s’-
is argued similarly, completing the proof.

One consequence of Theorem is that each u V’(p, q) is of the form o’i(s) for
exactly one initial sequence s. For e(u) occurs in each of the 2p Hamilton paths
in H(p, q) generated by initial sequences. But, by Lemma 1, the initial sequence is
recoverable from any signed sequence in its succession. So the 2 occurrences of
e(u) must correspond to 2p different signed sequences. But there are only 2p signed
sequences with e(t) e(u). So, as claimed, u tri(s) for a unique initial sequence

s and a unique/less than It also follows that u (u) implies that j 0.
P

In 4, the following will be needed.
LEMMA 3. H(p, q) has a Hamilton path between APBq and any vertex oftheform

ACBqAd with d >= and c + d p.
Proof Such a path will be generated by gcsd- + 1 2 q, where s is + or

according as q is even or odd.
Algorithm 382, TWIDDLE, simply follows the path generated by + p 1 2-.- q,

and is therefore justified by Theorem 1. Historically, Leo W. Lathroum was con-
cerned with efficient generation of fixed density binary sequences. He discovered
our sign device and applied it to the (single) initial sequence + p 1 q. He did not
consider the consequences of replacing lq= 1 1... 1 by 2... q. Lathroum’s
method was proved valid by Edward P. Neuburg, using an argument different
from ours.

Donald E. Knuth’s listing is recursively defined, giving a succession K(q, p),
beginning with 1 q 0 and ending with 0p 1 q, by transpositions, as follows"

K(q, p) K(q, p 1)0, K(q 1, p 1)01, K(q 2, p)l 1,

where K is the reverse of K. Surprisingly, the resulting Hamilton path in G(p, q)
turns out to correspond to 1 2 q(-)P.

3. The easek > 2. Let <j< k, where k>2. Let V= V(pl,... ,pk)
have symbols 4) (01,"", Ok)" Let V V(pl, pj_ 1, Pj + + Pk) have
symbols bl (01, "", 0j), and let V2 V(pj, ..., Pk) have symbols (])2 (Oj,
0+ 1,’", Ok). Then each s V is obtained by putting together two sequences
and u, V and u V2. Form from s by replacing each symbol 0 having >= j
by 0j. Form u from s by extracting the subsequence of symbols Oi with > j.
Then and u determine s, and are determined by s, and so we write s It, u].

Now let H, H1, and H2 be the kernel graphs corresponding to V, V1, V2,
respectively. Let T (tl, ..., ta) be a path in H. For u H2, let IT, u] (Its, u],
It2, u], ..., Ita, u]). Then IT, u] is a path in H including every It, u] with T.
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Let J (T1, T2,...) be a denumberable sequence of Hamilton paths in H such
that the initial vertex of T is the terminal vertex of T_I for i= 2, 3,.... Let
U (ul,"’, Ub) be a Hamilton path in H2. Then [Tl,u], [Tz,u2],-", [Tu,ub],
which we denote by [J, U], defines a Hamilton path in H.

THEOREM 2. H(pl, P2, Pk) has a Hamilton path.
Proof The case k 2 is covered by Theorem 1. With the appropriate induc-

tive hypothesis, there exists a Hamilton path T (t l, "", ta) in H(pl,..., Pk-2,

Pk-1 + P). Let J (T, , T, ,...), where (ta, ta-1,’’’, tl). Let U be a
Hamilton path for H(p_ 1, Pk). Then [J, U] is a Hamilton path for H(p

Algorithm 383 reduces inductively, by the above construction, using

H1 H(pl, P2 + + Pk), H2 H(p2, Pk), and J (T1, T2, T3, ...), where
each T corresponds to an initial signed p, q sequence (for p P and q P2 +
+ p). T corresponds to +Pl ...q. T+ is determined by T. Let T correspond
to the terminal sequence s s 2 q + b, a + b p, where the s are signs
with s if a > 0. Then T+ corresponds to the initial sequence

S Sa_ rSal 2... q(-)

(noting that a + if a > 0). Incidentally, the successive initial sequences so
formed include all 2p possibilities. The simpler sequence J used in the proof of
Theorem 2 was not used for reasons of efficiency.

4. H(p, ..., Pk) is Hamiltonian.
THEOREM 3. Except in the case H(1, q) with q > 1, H(p 1, "’", Pk) is Hamiltonian.

Proof The proof will be by induction on k. There are initial cases to be treated
for both k 2 and k 3. First, consider the case k 2, H(p, q). If q 1, H(p, q)
is clearly Hamiltonian. When q > 1, H(1, q) cannot be Hamiltonian because
ABq is adjacent only to BABq- 1. This leaves the subcase H(p, q), where p > 1 and
q > 1. According to Lemma 3, there are Hamilton paths T in H(p 1, q) and U
in H(p, q 1), T leading from Ap- 1Bq to BA- 1, and U leading from B- 1A to
A- 1B- 1A. If TA denotes the path in H(p, q) formed by adjoining A to the end of
each sequence in T, and if UB is formed similarly, then TA followed by UB is a
Hamilton circuit in H(p, q).

For k >_ 3, we can take P >= >- P-1. Since H(1, q) is not Hamiltonian
when q > 1, the cases H(1, 1, q) and H(p, 1, q), with p and q greater than 1, must be
treated separately. For the case H(1, 1, q), let S (sl, "’", Sa) be a Hamilton path
in H(2, q) with sl X2C and s, CqXz, which exists by Lemma 3. For each
in {2,..., a}, there is a transposition ri such that si "isi-1 Form the path
T (t l, "’, t,) in H(1, 1, q) by taking ABCq, and, for 2 <__ <= a, ziti_ 1.

Form U--(ul, "", u,) similarly, but with ul BAC. Then T followed by
(Ua, Ua-1,’’’, Ul) is a Hamilton circuit in H(1, 1, q). For an example, see

Fig. 2.
The remaining initial case is H(p, 1, q), where p and q are greater than 1.

By Lemma 3, there is a Hamilton path T in H(p,q + 1) from APX+1 to
Ap- 1xq+ 1A. Then U [T, BCq] is a path in H(p, 1, q) from APBCq to Ap- 1BCqA.
Suppose first that q is even. Let J (T, , T, ,...), and let W be the path
(CqB Cq- 1BC, CBCq- 1) in H(1, q). Since W is even with q, the last vertex in
[J, W] is APCBCq- 1, so that U followed by [J, W] is a Hamilton circuit in H(p, 1, q).
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The subcase with odd q >_ 3 remains. By Lemma 3, there are Hamilton paths T1
and T2 in H(p, q + 1) leading, respectively, from Ap- 1xq+ 1A to Xq+ lAP, and from
X+ lAP to APX+ 1. Let J’ (T, T1, T2, T, , T, ,...). Since I4’ is odd with
q, U followed by IJ’, W] gives a Hamilton circuit in H(p, 1, q).

Now let H(pl,..., Pk) be a case not so far covered. Then k >= 3 and we can
make the inductive assumption that H(p2,..., pk) has a Hamilton circuit W.
If pl 1, then there are at least two l’s among P2, "’", P, since H(1, 1, q) with
q > 1 has already been treated. But then W, which is of order (P2 + + P)!/
(P2! P!), would have to be even. Thus either W is even or P > 1. Suppose
first that W is even. Let T be any Hamilton path in H(p 1, P2 + + P), and let
J (T, T, T, T,...). Then [J, W] is a Hamilton circuit in H(pl,..., pk). Next,
suppose W is odd. Let p Pl and let q P2 + + P. As noted, it follows that
p > 1, so that there exist Hamilton paths U, U 1, U2 in H(p, q) leading, respectively,
from APBq to Ap- 1BqA, Ap- 1BqA to BqAp, BqAp to APBq. For J’ (U, U1, U2,
U, U, U, U...), [J’, V] is a Hamilton circuit in H(pl,..., Pk), completing the
proof.

COROLLARY. Every transposition graph G(pl, "", Pk) is Hamiltonian.
Proofi Except for G(1, q) with q > 1, this is implied by Theorem 3. But G(1, q)

is, in fact, complete and hence Hamiltonian.
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DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS*

J. E. HOPCROFTf AND R. E. TARJAN"

Abstract. An algorithm for dividing a graph into triconnected components is presented. When
implemented on a random access computer, the algorithm requires O(V + E) time and space to analyze
a graph with V vertices and E edges. The algorithm is both theoretically optimal to within a constant

factor and efficient in practice.
Key words, articulation point, connectivity, depth-first search, graph, separability, separation,

triconnectivity

Introduction. The connectivity properties of graphs form an important part
of graph theory. Efficient algorithms for determining some of these properties are
both theoretically interesting and useful in a variety ofapplications. This paper con-
siders the problem of dividing a graph into triconnected components. An algo-
rithm for this purpose is useful for analyzing electrical circuits [1 ], for determining
whether a graph is planar [2], and for determining whether two planar graphs are
isomorphic [-3]. An algorithm for planarity may be used in the design of printed
circuit boards; an algorithm for isomorphism of planar graphs may be used to
test structural isomorphism of chemical compounds [4].

One technique which has been used to solve connectivity problems is depth-
first search. In [5] and [6], depth-first search is applied to give efficient algorithms
for determining the biconnected components of an undirected graph and for
determining the strongly connected components of a directed graph. The method
has also been used in an efficient algorithm for planarity testing ([7], [8]) and in an
algorithm to find dominators in a flow graph [-9-]. This paper applies depth-first
search to the problem of finding the triconnected components of a graph. Old
methods for determining these components require O(V3) steps or more, if the
graph has V vertices ([ 1 ], 10]). The algorithm described here requires substantially
less time, and it may be shown to be optimal to within a constant factor, assuming
a suitable model of computation.

Four sections comprise the paper. The first section presents the necessary
definitions and lemmas from graph theory, and it describes depth-first search. The
second section intuitively explains the triconnectivity algorithm. The third
section describes preliminary calculations and a simple test to find the separation
pairs of a graph. The last section gives the heart of the triconnected components
algorithm, including proofs of its correctness and the derivation of time and space
bounds.

In deriving time bounds on algorithms, we assume a random-access computer
model. A formal definition of such a model may be found in [11]. Intuitively, any
logical, arithmetic, or control operation requires one step; all numbers must be
integers whose absolute values are O(V), if the problem graph has V vertices. (We

* Received by the editors July 27, 1972.
f Computer Science Department, Cornell University, Ithaca, New York 14850.
:I: This research was supported in part by the Hertz Foundation and the Office of Naval Research

under Grant N00014-67-A-0077-0021.
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use the following notation for specifying bounds: if f and g are functions of x, we
say f(x) is O(g(x)) if, for some constants kl and k2, If(x)[ _<_ kl[g(x)[ + k2 for all x.)

1. Graphs, connectivity, and depth-first search. The definitions used in this
paper are more or less standard; see [12] and [13]. Triconnected components may
be defined in several ways, all more or less equivalent. The results below, which we
give without proof, follow from those of Saunders Maclaine 14]; our definitions
are modified somewhat to make them more suitable for computer applications.
Tutte [15] has also developed a theory of triconnected components his definitions
are equivalent to ours and to Maclaine’s. The theory is also a special case ofthe more
general theory of decomposing "clutters" into "chunks" due to Edmonds and
Cunningham I16].

A graph G (, g) consists of a set containing V vertices and a set g
containing E edges. If the edges are ordered pairs (v, w) of distinct vertices, the
graph is directed; v is called the tail and w the head of the edge. If the edges are
unordered pairs of distinct vertices, also denoted by (v, w), the graph is undirected.
If is a multiset, that is, if any edge may occur several times, then G is a multigraph.
If (v, w) is an edge of a multigraph G, vertices v and w are adjacent. Edge (v, w) is
incident to vertices v and w; v and w are incident to (v, w). If ’ is a set of edges in
G, (’) is the set of vertices incident to one or more of the edges in ’. If S is a
set of vertices in G, g(S) is the set of edges incident to at least one vertex in S.

If G is a multigraph, a path p:v = w in G is a sequence of vertices and edges
leading from v to w. A path is simple if all its vertices are distinct. A path p :v v is
a cycle if all its edges are distinct and the only vertex to occur twice on p is v, which
occurs exactly twice. Two cycles which are cyclic permutations of each other are

considered to be the same cycle. The undirected version of a directed multigraph is
the multigraph formed by converting each edge of the directed multigraph into
an undirected edge. An undirected multigraph is connected if every pairof vertices
v and w in G is connected by a path. If G (U, g) and G’= (C’, g’) are two
multigraphs such that ’ and d’___ d, then G’ is a subgraph of G. A
multigraph having exactly two vertices v, w and one or more edges (v, w) is called
a bond.

A (directed, rooted) tree T is a directed graph whose undirected version is
connected, having one vertex (called the root) which is the head of no edges, and
such that all vertices except the root are the head of exactly one edge. The relation
"(v, w) is an edge of T" is denoted by v -, w. The relation "there is a path from v to

w in T" is denoted by v -*-, w. If v w, v is the father of w and w is a son of v. If
v -*-, w, v is an ancestor of w and w is a descendant of v. The set of descendants of a
vertex v is denoted by D(v). Every vertex is an ancestor and a descendant of itself.
If G is a directed multigraph, a tree T is a spanning tree of G if T is a subgraph of
G and T contains all the vertices of G.

Let P be a directed multigraph consisting of two disjoint sets of edges, de-
noted by v ---, w and v --, w. Suppose P satisfies the following properties.

(i) The subgraph T containing the edges v w is a spanning tree of P.
(ii) If v -,w, then w v. That is, each edge not in the spanning tree T of P

connects a vertex with one of its ancestors in T.
Then P is called a palm tree. The edges v w are called the fronds of P.
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A connected multigraph G is biconnected if for each triple of distinct vertices
v, w and a in V, there is a path p:v , w such that a is not on the path p. If there is
a distinct triple v, w, a such that a is on every path p :v , w, then a is called a
separation point (or an articulation point) of G. We may partition the edges of G so
that two edges are in the same block of the partition if and only if they belong to a
common cycle. Let Gi (V, Ei) where E is the set of edges in the ith block of the
partition, and V V(E). Then the following hold.

(i) Each G is biconnected.
(ii) No G is a proper subgraph of a biconnected subgraph of G.

(iii) Each vertex of G which is not an articulation point of G occurs exactly
once among the V and each articulation point occurs at least twice.

(iv) For each i, j, - j, V (3 V contains at most one vertex; furthermore, this
vertex (if any) is an articulation point.

The subgraphs G of G are called the biconnected components of G. The biconnected
components of G are unique.

Let {a, b) be a pair of vertices in a biconnected multigraph G. Suppose the
edges of G are divided into equivalence classes E E2, ..., E, such that two edges
which lie on a common path not containing any vertex of {a, b} except as an end-
point are in the same class. The classes Ei are called the separation classes of G with
respect to {a, b}. If there are at least two separation classes, then (a, b} is a separa-
tion pair of G unless (i) there are exactly two separation classes, and one class
consists of a single edge, or (ii) there are exactly three classes, each consisting of a
single edge.

If G is a biconnected multigraph such that no pair {a, b} is a separation pair
of G, then G is triconnected. Let {a, b) be a separation pair of G. Let the separation
classes of G with respect to {a,b} be E E2, E,. Let E’ [,.jki=l E and
E"= U,".-k+l Ei be such that IE’I >_- 2, IE"I _-> 2. Let G (V(E’),E’U {(a, b)}),
G2 (V(E"), E" [,.J {(a, b)}). The graphs G and G. are called split graphs of G
with respect to {a, b}. Replacing a multigraph G by two split graphs is called
splitting G. There may be many possible ways to split a graph, even with respect to
a fixed separation pair {a, b}. A splitting operation is denoted by s(a, b, i);i is a
label distinguishing this split operation from other splits. The new edges (a, b)
added to G and G2 are called virtual edges they are labeled to identify them with
the split. A virtual edge (a, b) associated with split s(a, b, i) will be denoted by
(a, b, i). If G is biconnected, then any split graph of G is also biconnected.

Suppose a multigraph G is split, the split graphs are split, and so on, until no
more splits are possible (each graph remaining is triconnected). The graphs
constructed in this way are called the split components of G. The split components
of a multigraph are not necessarily unique.

LEMMA 1. Let G (V, E) be a multigraph with ]El >= 3. Let G l, G2, G be
the split components of G. Then the total number of edges in G1, Ge,..., G,, is
bounded by 3]E] 6.

Proof. The lemma is proved by induction on the number of edges of G. If G
has 3 edges, the lemma is immediate, because G cannot be split. Suppose the lemma
is true for graphs with n edges and suppose G has n edges. If G cannot be
split, the lemma is true for G. Suppose, on the other hand, that G can be split into
G’ and G", where G’ has k + edges and G" has n- k + edges for some
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2 <_ k =< n 2. By induction, the total number of edges in G1, G2, G must
be bounded by 3(k + 1) 6 + 3(n k + 1) 6 3n 6. Thus, by induction,
Lemma is true.

In order to get unique triconnected components, we must partially reassemble
the split components. Suppose G1 (V1,Ex) and G2 --(Vz,E2) are two split
components, both containing a virtual edge (a, b, i). Let

G (V U V2, (E {(a, b, i)}) I..J (E 2 {(a, b, i)})).
Then G is called a merge graph of G and G2; the merge operation will be de-
noted by m(a, b, i). Merging is the inverse of splitting;if we perform a sufficient
number of merges on the split components ofa multigraph, we recreate the original
multigraph.

The split components of a multigraph are of three types" triple bonds of the
form ({a, b}, {(a, b), (a, b), (a, b)}), triangles of the form ({a, b, c}, {(a, b), (a, c),
(b, c)}), and triconnected graphs. Let G be a multigraph whose split components
are a set of triple bonds M3, a set of triangles -, and a set of triconnected graphs a3.
Suppose the triple bonds 3 are merged as much as possible to give a set of bonds, and that the triangles - are merged as much as possible to give a set of polygons
@. Then the set of graphs 13 U a3 is the set of triconnected components of G.
If G is an arbitrary multigraph, the triconnected components of the biconnected
components of G are called the triconnected components of G.

LEMMA 2. The triconnected components of a graph G are unique.

Proof. See 14], 16] and 17].
Figure illustrates a biconnected graph G with several separation pairs.

Figure 2 gives the split components of G. The triconnected components of G are
formed by merging triangle (1, 8, 4) and triangle (4, 5, 8).

9

I0

FIG. 1. A biconnected graph G with separation pairs (1, 3), (1, 4), (1, 5), (4, 5), (1, 8), (4, 8) and (8, 12)
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FG. 2. The split components of the graph G illustrated in Fig. I. Triconnected components are formed
by merging triangles (I, 8, 4) and (4, 5, 8)

Graph algorithms require a systematic way of exploring a multigraph. We
will use a method called depth-first search. To carry out a depth-first search of G,
start from some vertex s and choose an edge leading from s to follow. Traversing
the edge leads to a new vertex. Continue in this way, at each step selecting an
unexplored edge leading from the most recently reached vertex which still has
unexplored edges. If G is connected, each edge is traversed exactly once.

If G is undirected, a search of G imposes a direction on each edge of G given
by the direction in which the edge is traversed during the search. Thus the search
converts G into a directed multigraph G’.

LMA 3. Let P be te directed multigraph generated by a depth-first search ofa
connected undirected multigraph G. Then P is a palm tree.

Proof. See [5].
Depth-first search is important because the structure of paths in a palm

tree is very simple. To implement a depth-first search of a multigraph, we use
a simple recursive procedure which keeps a stack of the old vertices with possibly
unexplored edges. To represent a multigraph, we use a set of adjacency lists,
one for each vertex. If v is a vertex, adjacency list A(v) contains all w such that
(v, w) is an edge of G. These lists together comprise an adjacency structure for
G. If G is undirected, each edge (v, w) is represented twice, once in A(v) and once
in A(w). If G is directed, each edge is represented once.
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Below is a recursive procedure to carry out a depth-first search. The exact
search depends upon the order of edges in the adjacency lists. The procedure num-
bers the vertices from 1 to V in the order in which they are reached during the
search, in addition to identifying tree arcs and fronds. Reference [5] gives a proof
that the procedure is correct and requires O(V + E) time to execute. It is easy to
see that the vertices are numbered so that NUMBER(v)< NUMBER(w) if
v w in the generated spanning tree.

PROCEDURE 1.
begin comment routine for depth-first search of a multigraph G represented by

adjacency lists A(v). Variable n denotes the last number assigned to a
vertex;

integer n;
procedure DFS (, u); begin comment vertex u is the father of vertex v in the

spanning tree being constructed. The graph to be searched is
represented by a set of adjacency lists A(v);

n:= NUMBER (v) := n + 1;
a: comment dummy statement;

for w A(v) do begin
if NUMBER (w) 0 then begin

comment w is a new vertex;
mark (v, w) as a tree arc;
DFS (w, v);

b: comment dummy statement;
end
else if(NUMBER (w) < NUMBER(v)) and ((w 4= u) or -a FLAG (v))

then begin
comment the test is necessary to avoid exploring an edge

in both directions. FLAG (v) becomes false when the
entry in A(v) corresponding to tree arc (u, v) is
examined;

mark (v, w) as a frond;
c: comment dummy statement;

end;
if w u then FLAG (v) false;

end;
end;
n:=0;
for "= until V do begin

NUMBER (0 := O;
FLAG (0 true;

end;
comment the search starts at vertex s;
DFS (s, 0);

end;
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The dummy statements a, b, c, will be replaced when DFS is used to calculate
other information about the graph. Figure 3 depicts the palm tree formed by
applying DFS to the graph in Fig. 1.

FIG. 3. Palm tree produced by a depth-first search ofgraph G illustrated in Fig.

2. An outline of the tricolmectivity algorithm. This section sketches the ideas
behind the triconnectivity algorithm. Later sections develop the detailed compo-
nents. The algorithm is based on an idea of Auslander, Parter, and Goldstein
([18], [19]) for testing the planarity of graphs. Auslander, Parter, and Goldstein’s
idea gives rise to an O(V) time algorithm for testing planarity, if depth-first search
is used to order the calculations ([7, [8). The same idea gives an O(V + E) time
algorithm for finding triconnected components.

Let G be an arbitrary biconnected multigraph. Suppose a cycle c is found in G.
When the cycle is deleted from G, certain connected pieces remain; they are
called segments. Auslander and Parter [18] show that G is planar if and only if

(i) any subgraph of G consisting of c plus a single segment is planar,
(ii) the segments may be combined consistently to give a planar embedding

of the entire graph.
An efficient planarity algorithm may be developed from this result ([7], [8]). A
similar result holds for the separation pairs of G, i.e., the following lemma.
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LEMMA 4. Let G be a biconnected multigraph and let c be a cycle in G. Let
S ..., S be the subgraphs ofG c such that el and e2 are edges ofS ifand only if
some path p in G contains both e and e2, and no vertex ofc lies between e and e2 in
p. The segments Si and the cycle c partition the edges ofG. Let {a, b} be a separation
pair of G such that (a, b) is not a multiple edge. Then thefollowing conclusions hold.

(i) Either a and b both lie on c, or a and b both lie in some segment Si.

(ii) Suppose a and b both lie on c. Let p and P2 be the two paths comprising c
which join a and b. Then either

(a) some segment Si with at least two edges has only a and b in common
with c, and some vertex v does not lie in S ({a, b} is called a "type 1"
separation pair), or

(b) no segment contains a vertex v 4: a, b in P and a vertex w 4: a, b in

P2, and P and P2 each contain a vertex besides a and b ({a, b} is
called a "type 2" separation pair).

(iii) Conversely, any pair {a, b} which satisfies (a) or (b) is a separation pair.
It is easy to prove this lemma a more technical version is proved in the next

section. Lemma 4 gives rise to an efficient recursive algorithm for finding split
components. We find a cycle in G and determine the segments formed when it is
deleted. We test each segment for separation pairs by applying the algorithm
recursively and we test the cycle for separation pairs by checking the criteria in
Lemma 4. Recursive application of the algorithm requires finding cycles in sub-
graphs of G formed by combining a segment Si and the initial cycle c.

We can make this algorithm very efficient by ordering the calculations using
depth-first search. Each recursive call on the algorithm requires that we find a cycle
in the piece of the graph to be tested for separation pairs. This cycle will consist of
a simple path of edges not in previously found cycles plus a simple path of edges in
old cycles. We use depth-first search to divide the graph into simple paths which
may be assembled into these cycles. The first cycle c will consist of a sequence of
tree arcs followed by one frond in P, the palm tree formed from G by depth-first
search. The numbering of vertices is such that the vertices are in order by number
along the cycle. Each segment will consist either of a single frond (v, w) or of a tree
arc (v, w) plus a subtree with root w, plus all fronds which lead from the subtree.
The search explores the segments in decreasing order of v and partitions each into
simple paths consisting of a sequence of tree arcs followed by one frond.

Finding paths actually requires two searches because the pathfinding search
must be carried out in a special order if it is to succeed, and certain preliminary
calculations are necessary. The section on finding separation pairs describes the
pathfinding process in detail and includes a version of Lemma 4 which charac-
terizes separation pairs in terms of the generated paths. The section on finding
split components indicates how these results may be used to determine the split
components of a biconnected multigraph in O(V + E) time.

To determine the triconnected components of an arbitrary multigraph, we
eliminate multiple edges by splitting them off, creating a set of bonds with three
edges. This requires O(V + E) time if implemented correctly. Then we find the
biconnected components of the resultant graph using the O(V + E) algorithm
described in [5 and 61. Next, the split components ofeach biconnected component
are found using the algorithm outlined above and presented in detail in the next
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two sections. This gives us the split components of the entire graph. The total size
of the split components is O(V + E), by Lemma 1. Next we identify the set of
triple bonds 3 and the set of triangles -. For each of these two sets, we construct
an auxiliary graph S whose vertices are the elements of the set; two split compo-
nents are joined by an edge in an auxiliary graph if they have a common virtual
edge. The connected components of S(3) and S(-) correspond to the bonds and
polygons which are triconnected components of G. Finding these bonds and poly-
gons requires O(V + E) time. Below is an outline of the entire algorithm.

PROCEDURE 2.
procedure TRICONNECTIVITY (G); begin comment an outline of the tri-

connected components algorithm;
A: split off multiple edges of G to form a set of triple bonds and a

graph G’;
B: find biconnected components of G’;

for each biconnected component C of G’ do
C: find split components of C;
D: combine triple bonds and triangles into bonds and polygons by

finding connected components of corresponding auxiliary graphs;
end;

Steps A, B, and D all require O(V + E) time if correctly implemented. Im-
plementation of step B is described in I5] implementation of steps A and D is left
as an exercise. The hard step is step C, whose implementation is described in the
next two sections. Based on the results of these sections, the entire triconnectivity
algorithm has O(V + E) time and space bounds.

3. Finding separation pairs. Let G (U, ) be a biconnected multigraph
with V vertices and E edges. The main problem in dividing G into its split com-
ponents lies in finding its separation pairs. This section gives a simple criterion,
based upon depth-first search, for identifying the separation pairs of a multigraph.
Two depth-first searches and some auxiliary calculations must be carried out.
These calculations form the first part of the split components algorithm, and are
outlined below. The definitions for the quantities LOWPT1, ND, etc., used in the
outline will be given subsequently.

Step 1. Perform a depth-first search on the multigraph G, converting G into
a palm tree P. Number the vertices of G in the order they are reached during the
search. Calculate LOWPT1 (v), LOWPT2 (v), ND (v), and FATHER (v) for each
vertex v in P.

Step 2. Construct an acceptable adjacency structure A for P by ordering the
edges in the adjacency structure according to the LOWPT1 and LOWPT2 values.

Step 3. Perform a depth-first search of P using the adjacency structure A.
Renumber the vertices of A from V to in the order they are last examined during
the search. Partition the edges into disjoint simple paths. Recalculate LOWPT1 (v)
and LOWPT2 (v) using the new vertex numbers. Calculate.A 1 (v), DEGREE (v), and
HIGHPT (v) for each vertex v.
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The details of these calculations appear below. From steps 1, 2 and 3, we
get enough information to rapidly determine the separation pairs of G. Lemma 13
gives a condition for this purpose.

Suppose G is explored in a depth-first manner, giving a palm tree P. Let the
vertices of P be numbered from to V so that v w in P implies v < w, if we
identify vertices by their number. For any vertex v in P, let FATHER (v) be the
father of v in the spanning tree of P. Let ND (v) be the number of descendants of v.
Let LOWPT1 (v) min ({v} 12 {wlv- w}). That is, LOWPT1 (v)is the lowest
vertex reachable from v by traversing zero or more tree arcs in P followed by at
most one frond. Let LOWPT2 (v)= min {v) ({wlv----,w}- {LOWPT1
(v)})]. That is, LOWPT2 (v) is the second lowest vertex reachable from v by travers-
ing zero or more treearcs followed by at most onefrond ofP, unless LOWPT1 (v) v.
In this case, LOWPT2 (v) v.

LEMMA 5. LOWPT1 (v) - v and LOWPT2 (v) - v in P.
Proof. LOWPT1 (v) v by definition. If LOWPT1 (v) v, the result is im-

mediate. If LOWPT1 (v) < v, there is a frond u LOWPT1 (v) such that v u.
Since u -LOWPT1 (v) is a frond, LOWPT1 (v) - u. Since P is a tree, v u and
LOWPT1 (v) u, either v LOWPT1 (v) or LOWPT1 (v)- v. But LOWPT1
(v) < v. Thus it must be the case that LOWPT1 (v) - v - u, and the lemma holds
for LOWPT1 (v). The proof is the same for LOWPT2 (v).

LEIMA 6. Suppose LOWPT1 (v) and LOWPT2 (v) are defined relative to some
numbering for which v w in P implies NUMBER (v) < NUMBER (w). Then
LOWPT1 (v) and LOWPT2 (v) identify unique vertices independent ofthe numbering
used.

Proof. LOWPT1 (v) always identifies an ancestor of vertex v. Furthermore,
LOWPTI (v) is the lowest numbered ancestor of v with a certain property relative
to the palm tree P. Since the order of the ancestors of v corresponds to the order of
their numbers, LOWPT1 (v) identifies a unique vertex independent of the number-
ing, i.e., the first ancestor of v along the path 1 v which has the desired property.
(Any satisfactory numbering assigns 1 to the root of P.) The proof is the same for
LOWPT2 (v).

The LOWPT values of a vertex v depend only on the LOWPT values of sons
of v and on the fronds leaving v;it is easy to see that if vertices are identified by
number, then

LOWPT1 (v)= min ({v} U {LOWPT1 (w)lv w} U {wlv --,w})
and

LOWPT2 (v)= min ({v} U (({LOWPT1 (w)lv w} U {LOWPT2 (w)lv--, w}

U {wlv --,w})- {LOWPT1 (v)})).

We also have ND (v)= 1 + v-w ND (w). We may calculate LOWPT values,
ND, and FATHER for all vertices in O(V + E) time by inserting the following
statements for the dummy statements a, b, c in DFS. Numbering the vertices in
the order they are reached during the search clearly guarantees that v - w implies
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PROCEDURE 3.
comment additions to DFS for step
a: LOWPT1 (v):= LOWPT2 (v):= NUMBER (v);
ND (v) := l;

b: if LOWPT1 (w)< LOWPT1 (v)then begin
LOWPT2 (v) min (LOWPT (v), LOWPT2 (w))
LOWPT1 (v):= LOWPT1 (w);

end else if LOWPT1 (w) LOWPT1 (v) then
LOWPT2 (v) := min (LOWPT2 (v), LOWPT2 (w)};

else LOWPT2 (v) := min (LOWPT2 (v), LOWPT1 (w)};
ND (v) := ND (v) + ND (w);
FATHER (w):= v;

c: if NUMBER (w) < LOWPT1 (v)then begin
LOWPT2 (v):= LOWPT1 (v);
LOWPT1 (v):= NUMBER (w);

end else if NUMBER (w) > LOWPT1 (v) then
LOWPT2 (v) := min {LOWPT2 (v), NUMBER (w)};

It is easy to verify that DFS as modified above will compute LOWPT1,
LOWPT2, ND, and FATHER correctly in O(V + E) time. (See [8], [17].)
LOWPT1 may be used to test the biconnectivity of G, as described in [5]. The
following lemma is important.

LEMMA 7. If G is biconnected and v w, LOWPT1 (w) < v unless v 1, in
which case LOWPT1 (w) v 1. Also, LOWPT1 (1) 1.

Proof. See [5.
Let 4) be the mapping from the edges ofP into { 1, 2, ..., 2V + defined by
(i) if e= v- w, 4(e)= 2w+ 1.

(ii) if e v w and LOWPT2 (w) < v, b(e) 2LOWPT1 (w).
(iii) if e v w and LOWPT2 (w) _>_ v, b(e) 2LOWPT1 (w) + 1.
Let A be an adjacency structure for P. A is called acceptable if the edges e in

each adjacency list of A are ordered according to increasing value of b(e).
LEMMA 8. Let P be a palm tree of a biconnected graph G whose vertices are

numbered so that v w in P implies v < w. Then the acceptable adjacency structures

ofP are independent of the exact numbering scheme.
Proof. If v --, w in P, then by Lemma 5, LOWPT2 (w) is an ancestor of w.

By Lemma 6, LOWPT2 (w) is a fixed vertex independent of the numbering. Since
the order of the ancestors is independent of the numbering, the question as to
whether LOWPT2 (w) is less than v is independent of the numbering. Since G is
biconnected if v --, w in P, then LOWPT1 (w) __< v by Lemma 7. By Lemma -5,
LOWPT1 (w) is an ancestor of w. Since LOWPT1 (w) =< v, LOWPT1 (w) must be
an ancestor of v. By Lemma 6, the vertex corresponding to LOWPT1 (w) is indepen-
dent of the numbering scheme. Similarly, if v -,w, then by Lemma 3 and the
definition of a palm tree, w is an ancestor of v. But the order of the ancestors of v
is identical to the order of their numbers, and this order is independent of the
numbering. Thus the acceptable adjacency structures A for P depend only on P
and not on the exact numbering.
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In general, a palm tree P has many acceptable adjacency structures. Given a
satisfactory numbering of the vertices of P, we may easily construct an acceptable
adjacency structure A by using a radix sort with 2V + buckets. The following
procedure gives the sorting algorithm, which is step 2 of the calculations. All
vertices are identified by number. It is obvious that the sorting procedure requires
O(V + E) time.

PROCEDURE 4.
comment construction of ordered adjacency lists;
for := until 2* V + do BUCKET (i) := the empty list;
for (v, w) an edge of G do begin

compute q((v, w));
add (v, w) to BUCKET (b(v, w));

end;
for i:= until V do A(i) := the empty list;
fori’= luntil2*V+ ldo

for (v, w) BUCKET (i) do add w to end of A(v);

In step 3 of the calculations, we perform a depth-first search of P using the
acceptable adjacency structure A given by step 2. This search generates a set of
paths in the following manner" each time we traverse an edge we add it to the
path being built. Each time we traverse a frond, the frond becomes the last edge
of the current path. Thus each path consists of a sequence of tree arcs followed by
a single frond. Because of the ordering imposed on A, each path terminates at the
lowest possible vertex, the initial path is a cycle, and each path except the first is
simple and has only its initial and terminal vertex in common with previously
generated paths ([7], [8).

If p’s f is a generated path, we may form a cycle by adding the tree path
f s to p. The cycles formed in this way are the cycles generated by recursive
calls on the basic triconnectivity algorithm explained in the last section.

We need only minimal information about the paths. Let the vertices of P be
numbered so that v w implies v =< w. Let Al(v) be the first vertex in A(v). If
v -, w is the first frond explored in step 3 which terminates at w, let HIGHPT (w)

v. Let DEGREE (v) be the number of edges incident to vertex v. Step 3 numbers
the vertices from V to 1 in the order they are last examined during the search. It
is clear that this numbering guarantees that v < w if v - w. Step 3 also computes
LOWPT1 (v), HIGHPT (v), A1 (v), and DEGREE (v) with respect to new number-
ing. Procedure 5, based on DFS, will perform step 3 in O(V + E) time.

PROCEDURE 5.
step 3: begin comment routine to generate paths in a biconnected palm

tree with specially ordered adjacency lists A(v). Vertex s is a
global variable denoting the start vertex of the current path.s
is initialized to 0. Variable rn denotes the last number assigned
to a vertex;
procedure PATHFINDER (v); begin

X: NEWNUM (v) := m ND (v) + l;
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Y

Z

for w A(v) do
if s 0 then begin

S :-- V;
start new path;

end;
add (v, w) to current path;
if v w then begin

PATHFINDER (w);
m:=m-1;

end else begin comment v w
if HIGHPT (NEWNUM (w)) 0 then

HIGHPT (NEWNUM(w)) :=
NEWNUM (v);

output current path;
s:=0;

end;
end;
s:-0;
m:=V;
for := until V do NEWNUM (i) := HIGHPT (i) := 0;
comment vertex is the start vertex of the search;
PATHFINDER (1);
for all vertices V do

compute A1 (v), DEGREE (v), LOWPT1 (v), and
LOWPT2 (v) using the new numbering;

end;

Step 3 numbers the vertices from V to in the order they are last reached
during the search. However, each vertex must actually be assigned a number the
first time it is reached, in order for the calculation ofHIGHPT to proceed correctly.
In order to accomplish this, variable is set equal to V when the search begins
(statement Z). The value of is decreased by one each time a new vertex is discovered
(statement Y). Thus when a vertex v is first reached, is equal to the number we
want to assign to v minus the number of vertices to be examined before v is examined
for the last time. But the vertices to be reached between the time v is first examined
and the time v is last examined are just the proper descendants of v. Thus if we
assign the number ND(v) + 1 to v when v is first examined (statement X),
the numbering Will be correct. The other calculations performed in step 3 are
straightforward and easy to implement. The palm tree for the graph G of Fig. is
illustrated in Fig. 4 along with LOWPT values and the set of paths generated by
step 3.

Let G be a biconnected multigraph on which steps 1, 2, and 3 have been per-
formed, giving a palm tree P and the sets of values defined above. Let A with ad-
jacency lists A(v) be the acceptable adjacency structure constructed in step 2. Let
the vertices of G be identified by the numbers assigned in step 3. We need one more
definition. If u --, v and v is the first entry in A(u), then v is called the first son of u.
(For each vertex v, Al(v), the first son of v if one exists, is calculated in step 3.)
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(8,9)

C F

-r (4,5)

FIG. 4. Ordered palm tree ofgraph G after pathfinding search with LOWPT1 and LOWPT2 values
in parentheses

Type pairs: (1, 4), (1, 5), (4, 5), (1, 8), (1, 3)
Type 2 pairs:(4, 8), (8, 12).
Paths: A:(1,2,3,13,1) B:(13,2) C:(3,4,5,8,9,10,12,1) D:(12,8) E:(12,9) F :(10,11, 8)

G:(ll,9) H:(8,1) I:(5,6,7,4) J:(7,5) K:(6,4) L:(4,1)

If Uo --, ul ---’ u,, and ui is a first son of ui_ for 1 <= <= n, then u, is called a

first descendant of Uo. The sequence of tree arcs Uo U -, u2 -,"" --, u, is
part of a path generated by step 3. The lemmas below give the properties we need
to determine the separation pairs of G.

LEMMA 9. Let A(u) be the adjacency list of vertex u. Let u v and u w be
tree arcs with v occurring before w in A(u). Then u < w < v.

Proof. Step 3 numbers the vertices from V to in the order they are last
examined in the search. If u --, v is explored before u --, w, v will be examined last
before w is examined last, and v will receive a higher number. Clearly u will be last
examined after both v and w are last examined, so u receives the smallest number
of the three vertices.

LEMMA 10. A is acceptable with respect to the numbering given by step 3.
Proof. The sorting in step 2 creates an acceptable adjacency structure for the

original numbering. By Lemma 9, u ---, v implies u < v and hence by Lemma 8, A
is acceptable for the new numbering.



DIVIDING A GRAPH INTO TRICONNECTED COMPONENTS 149

LEMMA 11. If.v is a vertex and D(v) is the set of descendants of v, then D(v)
{xlv <=x <v +ND(v)}. If w is a first descendant of v, then D(v)-D(w)

-<_ x < w}.
Proof. Suppose we reverse all the adjacency lists A(v) and use them to specify

a depth-first search of P. Vertices will be examined for the first time in ascending
order from 1 to V, if vertices are identified by their step 3 number. Thus descendants
of v are assigned consecutive numbers from v to v + ND (v) 1. If w is a first
descendant of v, vertices in D(w) will be assigned numbers after all vertices in
D(v) D(w). Thus D(v) D(w) {xlv <= x < w}.

LEMMA 12. Let {a, b} be a separation pair in G with a < b. Then a - b in the
spanning tree T ofP.

Proof. Since a < b, a cannot be a descendant of b. Suppose b is not a descen-
dant of a. Let Ei, for 1 =< k, be the separation classes with respect to {a, b}.
Let S U D(a) D(b). The vertices S define a subtree in T containing neither
a nor b, so E(S) must be contained in some separation class, say El. Let c be any
son of a. E(D(c)) must be contained in some separation class. But since G is bicon-
nected, and a :A 1, LOWPT1 (c) < a, by Lemma 7. Thus some edge is incident to
a vertex in S and to a vertex in D(c). Thus E(D(c))

___
E A similar argument shows

that edges incident to any descendant of b are in El. But this means that E E,
and {a, b} cannot be a separation pair.

LEMMA 13. Suppose a < b. Then {a, b} is a separation pair of G if and only if
either (i), (ii), or (iii) below holds.

(i) There are distinct vertices r :/: a, b and s :/: a, b such that b r, LOWPT1
(r) a, LOWPT2 (r) >= b, and s is not a descendant of r. (The pair {a, b} is called a
"type 1" separation pair. The type 1 pairsfor the graph in Fig. 4 are (1, 3), (1, 4), (1, 5),
(4, 5) and (1, 8).)

(ii) There is a vertex r :/: b such that a r b; b is a first descendant of r
(i.e., a, r, and b lie on a common generated path) a :/: 1; every frond x y with
r <_x <bhasa<=y;andeveryfrondx- ywitha<y<bandbwxhas
LOWPT1 (w) >= a. ({a, b} is called a "type 2" separation pair. The type 2 pairs for
the graph in Fig. 4 are (4, 5) and (8, 12)).

(iii) (a, b) is a multiple edge ofG and G contains at least four edges.
Proof. The converse part of the lemma is easiest to prove. Suppose pair

{a, b} satisfies (i), (ii), or (iii). Let Ei for <= <= k be the separation classes of G
with respect to {a, b}. Suppose {a, b} satisfies (i). Then the edge (b, r) is contained
in some separation class, say El. Every tree arc with an endpoint in D(r) has the
other endpoint in D(r) 12 {a, b}. Also, since LOWPT1 (r)= a and LOWPT2 (r)
>= b, every frond with an endpoint in D(r) has the other endpoint in D(r) I.J {a, b}.
Thus E consists of all edges with an endpoint in D(r). No other edges are in El,
and the edges incident to vertex s must be in some other class, say E2. Since E,
and E2 each contain two or more edges, {a, b} is a separation pair.

Suppose {a, b} satisfies (ii). Let S D(r) D(b). All edges incident to a ver-
tex in S are in the same separation class, say E. Since b is a first descendant of r,
S {xlr <= x < b} by Lemma 1. Let b, b2,’.. b be the sons of b in the order
they occur in A(b). Let io min {ilLOWPT1 (b) >__ a}. By the ordering imposed
on A, < io implies LOWPT1 (b) < a, and >= 0 implies LOWPT1 (bi) >= a. By
(ii), every frond with tail in S has its head in S 12 {a}. Also by (ii), every frond with
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head in S has its tail in S U {b} U (U ->_o D(b)). Every edge with an endpoint in
D(b), i>__ io, has its other endpoint in S U {a, b} U D(b). Thus the class E
contains at least all edges with an endpoint in S, and at most all edges with an
endpoint in S U (U>__o D(b)). Since a # 1, the edges incident to the root of P
cannot be in E, and therefore {a, b} is a separation pair.

Now we must prove the direct part of the lemma. Suppose that {a,b} is
a separation pair with a < b. If (a, b) is a multiple edge of G, then it is clear that
{a, b} satisfies (iii). Thus suppose that (a, b) is not a multiple edge of G. By Lemma
12, a b. Let E, for __< __< k, be the separation classes of G with respect to
{a, b}. Let v be the son of a such that a--, v b, S D(v) D(b), and X V

D(a). (Either S or X or both may be empty.) E(S) and E(X) are each contained
in a separation class, say E(S)

_
E and E(X)

_
E2.

Let a # v be a son of a. If a has such a son, LOWPT1 (a) < a. This means that
E(D(aO) E2. Let Y X U (U D(aO). Let b, b2, b, be the sons of b in the
order they occur on the adjacency list of b. Let E(D(b)) be the set of edges with an
endpoint in D(b). The separation classes must be unions of the sets E(S), E(Y),
{(a, b)}, E(D(bl)), E(D(b2)), E(D(b,)).

If E(D(b)) Ej for some andj, then LOWPT1 (bi) a since G is biconnected,
and this means LOWPT1 (b) < b by Lemma 7. Also, LOWPT2 (b) >= b. Since
{a, b} is a separation pair, there must be a separation class other than Ej and
{(a, b)}. Thus there is a vertex s such that s va a, s 4: b, and s D(bi). This means that
{a, b} satisfies (i) where r is bi.

Suppose now that no E(D(b)) is by itself a separation class. Let io min
{i]LOWPT1 (bi) _>_ a}. If => io, then since G is biconnected, it must be the case
that LOWPT1 (b) < b, and theseparationclassesareE E(S) U ((-Ji>=o E(D(b)),
E2 E(Y) (U i<io E(D(bi))), Ea {(a, b)}. (E may be empty.) We have v va b
since a, b} is not a type 1 pair and a 4:1 since E is nonempty. If x -y is a frond
with v <_ x < b, then x 6 S, (x, y) 6 E, and a =< y. If x -.y is a frond with
a < y < b and b - b x, then ye S, (x,y) e E, and => io, which means that
LOWPT1 (bi) >= a. We must verify one more condition to show that (ii) holds,
i.e., that b is a first descendant of v. Since G is biconnected, LOWPT1 (v) < a. Thus
some frond with tail in D(v) has head less than a. By the ordering imposed on A
and the definition of a first descendant, there exists some frond x- -y with
x D(v) and y < a such that x is a first descendant of v. If b were not a first descen-
dant ofv, then x would be in S, and E andE2 could not be distinct separation classes.
Thus b is a first descendant of v, and (ii) holds with r v. This completes the proof
of the direct part of the lemma.

Lemma 13 and its proof are worth pondering carefully. The lemma gives
three easy-to-apply conditions for separation pairs. Conditions (i) and (ii) identify
the nontrivial separation pairs of the multigraph. Condition (iii) handles multiple
edges. Condition (i) requires that a simple test be performed on each tree arc of P.
Thus testing for type 1 pairs requires O(V) time. Testing for type 2 pairs is somewhat
harder, but may be done in O(V + E) time using another depth-first search. Let
{a, b} be a type 2 pair satisfying a r a, b, and io min {ilLOWPT2 (b,) >= a},
where b, b2, ..., b, are the sons of b in the order they occur in A(b). Then one
separation class with respect to {a,b} is E({x]r <= x < bo + ND (b/o)}- {b}).
This follows from the proof of Lemma 13. The new numbering, which satisfies the
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somewhat strange condition in Lemma 9, thus makes it easy to determine the
separation classes and to divide the graph once a separation pair is found. An
algorithm for finding split components based on Lemma 13 is given in the next
section.

4. Finding split components. We find split components by examining the
generated paths in order and testing for separation pairs with Lemma 13. Separ-
ation pairs will be of several types. Multiple edges and type pairs are easy to
recognize. So are type 2 pairs {a, b}, where a v b and v has degree two.
Other type 2 pairs are somewhat harder to recognize. Let c be the first path gener-
ated (a cycle). The cycle consists of a set of tree arcs 1 /)1 /)2 -" Un
followed by a frond v, 1. The vertex numbering is such that < vl < < v,.
When c is removed, the graph falls into several connected pieces, called segments.
Each segment consists either of a single frond (vi, vt), or of a tree arc (vi, w) plus a
subtree with root w plus all fronds leading from the subtree. The order of path
generation is such that all paths in one segment are generated before paths in any
other segment, and the segments are explored in decreasing order of vi.

Suppose we repeat the pathfinding search, using it now to find split compo-
nents. We shall keep a stack of edges, adding edges to this stack as we back up
over them during the search. Each time we find a separation pair, we remove a
set of edges from the stack corresponding to a split component. We add a virtual
edge corresponding to the split both to the component and to the edge stack. We
also need to update various pieces of information, since the fathers of vertices and
the degrees of vertices may change when a graph is split. The complete path-
finding search will create a complete set of split components. Assembling the
split components to give the triconnected components is then a simple matter.

To identify type 2 pairs, we keep a stack (called TSTACK) of triples (h, a, b).
The pair {a, b} is a possible type 2 pair and h denotes the largest numbered vertex
in the corresponding split component. The pairs are in nested order on the stack;
that is, if v is the current vertex being examined by the pathfinding search, and
(hi, al, bl) (h2, a2, b2) (hk, ak, bk) are on TSTACK, then ak =< ak_ <
<= a2 al /)i b <__ b2 <- bk. Furthermore, all the a and b are vertices
on the cycle c.

We update TSTACK in the following ways.
1. Each time we traverse a new path p’s , f, we delete all triples (h

on top ofthe stack with a > f. Ifp has second vertex v - f, let x v + ND (v) 1.
Otherwise let x s. Let y max {htl triple (ht, at, bt) was deleted from TSTACK}.
If (hk, ak, bk) was the last triple deleted, we add (max (x, y), f, s) to the stack. It’no
triple was deleted, we add (x, f, s) to the stack.

2. When we back up over a tree arc v ---, vi/ with v : 1, we delete all
entries (ht, at, bt) on top of TSTACK satisfying HIGHPT (v) > ht. This test is
necessary to guarantee that entries not corresponding to type 2 pairs don’t
accumulate on TSTACK.

We use TSTACK to find separation pairs in the following way’whenever we
back up along a tree arc v vi+ during the pathfinding search, we examine the
top triple (h, al, bl) on TSTACK. If v - 1, a Vi, and a =/= FATHER (bi)
{al,bl} is a type 2 separation pair. If DEGREE (v+ 1) 2 and V+l has a son,
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then vi and the son of vi+ form a type 2 separation pair. We split off components
corresponding to type 2 pairs until these two conditions give us no more components.
(Simultaneously, we test for components corresponding to multiple edges and
split these off.) Then we apply Lemma 13 to test whether {v, LOWPT1 (v+ 1)} is
a type 1 pair, splitting off a component if necessary. (Again, we need to check for a
multiple-edge component.)

We handle the recursive part of the algorithm in the following way" traversing
a path p’s , f which starts on c means the search is entering a new segment.
Vertex f must be the lowest vertex in the segment by the ordering imposed on the
pathfinding search. After we update TSTACK as described above, if p contains
more than one edge we place an end-of-stack marker on TSTACK and continue
finding paths. This corresponds to a recursive call of the basic triconnectivity
algorithm. When we back up over the first edge of p, we delete entries from
TSTACK all the way down to the end-of-stack marker. This corresponds to
popping up from the recursion.

One more point needs explanation’the reason we use LOWPT2 as well as
LOWPT1 to construct A, the acceptable adjacency structure which determines the
pathfinding search order. This step is necessary so that all multiple edges are
handled correctly. Suppose v is a vertex, and wl, w2, "", wk are the sons of v such
that LOWPT1 (w) u. Further suppose that v --,u. Let the w be ordered as in
A(v). There is some io such that iN io=, LOWPT2(wi)< v and i> io
LOWPT2 (w)_> v. In A(v), u will appear after all the w with <-iN i0.

If > io, then {u, wi} is a type 1 separation pair; splitting off the corresponding
component produces a new (virtual) frond v --u. It is important that all the wi
with > io appear together in A(v) so that these virtual fronds may be located and
combined to give split components which are bonds.

Below is an ALGoL-like procedure to find split components based on the
ideas outlined above. The procedure is applicable to any biconnected multi-
graph for which steps 1, 2, and 3 described in the previous section have been carried
out.

PROCEDURE 6.
procedure SPLIT (G); begin

comment procedure to determine split components of G, a biconnected
multigraph on which steps 1, 2 and 3 have been carried out. G is repre-
sented by a set of properly ordered adjacency lists A(v). TSTACK
contains triples representing possible type 2 separation pairs. ESTACK
contains edges backed up over during search. Other variables have been
defined in the previous section;

procedure PATHSEARCH (v); begin
comment this recursive procedure repeats the pathfinding search, finding

separation pairs and splitting off components as it proceeds. It is
based on the material in this section and the last. Vertex v is the
current vertex in the depth-first search;

for w e A(v) do
if v - w then begin

A: if v --, w is first edge of a path then begin
y:=0;
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while (h, a, b) on TSTACK has a > LOWPT1 (w) do begin
y "= max (y, h);
delete (h, a, b) from TSTACK;

end;
if no triples deleted from TSTACK then add

(w + ND (w) 1, LOWPT1 (w), v) to TSTACK
else if (h, a, b) last triple deleted then add

(max {y, w + ND (w) 1}, LOWPT1 (w), b) to
TSTACK;

add end-of-stack marker to TSTACK;
end;
PATHSEARCH (w);
add (v, w) to ESTACK;
while v4= and ((DEGREE (w)=2) and (A1 (w)>w) or

(h, a, b) on TSTACK satisfies (v a)) do begin
comment test for type 2 pairs;

if (h, a, b) on TSTACK has (a v) and
(FATHER (b) a)
then delete (h, a, b) from TSTACK;

else begin
if (DEGREE (w) 2) and (A1 (w) > w) do begin
j=j+l;

add top two edges (v, w) and (w, x) on ESTACK
to new component;

add (v, x, j) to new component;
if (y, z) on ESTACK has (y, z) (x, v) then begin

FLAG true;
delete (y, z) from ESTACK and save;

end;
end else if (h, a, b) on TSTACK satisfies v a and

a - FATHER (b) then begin
j=j + 1;
delete (h, a, b) from TSTACK;
while (x, y) on ESTACK has (a =< x =< h) and

(a =< y =< h)do
if (x, y) (a, b) then begin
FLAG TRUE;

delete (a, b) from TSTACK and save;
end else begin

delete (x, y) from ESTACK and add to current
component;

decrement DEGREE (x), DEGREE (y);
end
add (a, b, j) to new component;

end;
if FLAG then begin

FLAG false;
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j’=j+l;
add saved edge, (x, v, j 1), (x, v, j) to new

component;
decrement DEGREE (x), DEGREE (v);

end;
add (v, x, j) to ESTACK;
increment DEGREE (x), DEGREE (v);
FATHER (x) v;
if A (v) - x then A (v) x;
W ":X,

end;
comment test for a type pair;
if (LOWPT2 (w) => v) and ((LOWPT1 (w) 1) or

(FATHER (v) :/: 1)
or (w > 3))

then begin
j’=j+ 1;
while (x, y) on top of ESTACK has

(w<=x<w+ND(w))or
(w =< y < w + ND (w))

then begin
delete (x, y) from ESTACK;
add (x, y) to new component;
decrement DEGREE (x), DEGREE (y);

end;
add (v, LOWPT1 (w),j) to new component;
if A1 (v)= w then A1 (v)"= LOWPT1 (w);
comment test for multiple edge;
if (x, y) on top of ESTACK has

(x, y) (v, LOWPT1 (w))
then begin

j’=j+l;
add (x, y), (v, LOWPT1 (w), j 1),

(v, LOWPT1 (w),j) to new component;
decrement DEGREE (v),

DEGREE (LOWPT1 (w));
end;
if LOWPT1 (w) = FATHER (v) then begin add

(v, LOWPT1 (w), j) to ESTACK;
increment DEGREE (v),

DEGREE (LOWPT1 (w));
end else begin

j’=j+ 1;
add (v, LOWPT1 (w), j 1),

(v, LOWPT1 (w), j), tree arc
(LOWPT1 (w), v) to new component;

mark tree arc (LOWPT1 (w), v) as virtual edgej’;
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end;
end;

C’ if v w is the first edge of a path then delete all entries on
TSTACK down to and including end-of-stack marker;

D" while (h, a, b) on ESTACK has HIGHPT (v) > h, do delete
(h, a, b) from TSTACK;

end else begin comment v- w;
F: if v- w is first (and last) edge of a path then begin

y 0;
while (h, a, b) on TSTACK has a > w do begin

y "= max (y, h);
delete (h, a, b) from TSTACK;

end;
if no triples deleted from TSTACK then add (v, w, v) to

TSTACK;
if (h, a, b) last triple deleted then add (y, w, b) to TSTACK;

end;
if w FATHER (v) then begin

j’=j+l;
add (v, w), (v, w, j), tree arc (w, v) to new component;
decrement DEGREE (v), DEGREE (w);
mark tree arc (w, v) as virtual edge j;

end else add (v, w) to ESTACK;
end; end;
j.=0;
FLAG false;
PATHSEARCH (1);

end;
LEMMA 14. SPLIT correctly divides a biconnected multigraph G into split

components.

Proof. We must prove two things" (i) if G is triconnected, SPLIT will not
split it, and (ii) if G is not triconnected, the algorithm will split it. Once we have
these two facts, we may prove the lemma by induction on the number of edges in
the graph. The tests for multiple edges, for type 1 separation pairs, and for degree-
two vertices are straightforward. (The type test (G in PATHSEARCH) includes
the condition (LOWPT1 (w) 4: 1) or (FATHER (v) 4= 1) or (w > 3) to make sure
that some vertex lies outside the corresponding split component.) These tests will
discover a separation pair of the correct type if one exists, and they will not report
a separation pair if one does not exist. Thus we must only show that the type 2
test works correctly on multigraphs with no degree-two vertices, multiple edges or
type separation pairs, and we will have verified (i) and (ii).

Suppose G is a biconnected multigraph with no degree-two vertices, multiple
edges, or type 2 separation pairs. Let us consider the type 2 test and the changing
contents of TSTACK as the search of G progresses. If (h al, b), ..., (hk, ak, b)
are the contents of TSTACK above the highest end-of-stack marker, and if v is
the vertex currently being examined during the search, then a _< a_ =< =< a
_<_ v _<_ b <_... <= b. This follows by induction from an examination of the
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possible changes that can be made in TSTACK (statements A, B, C, D, E, F in
PATHSEARCH). Furthermore, ak, ak_ v, b b all lie on the cycle corres-
ponding to the current recursive call of the basic triconnectivity algorithm.

Suppose (h, a, b) on TSTACK is found to satisfy the type 2 test when the
search returns along a tree arc v-, w. The test (B, E in PATHSEARCH) states
that a v, v va 1, and FATHER (b) - a. It follows that r A1 (a) - b satisfies
a r - b and that b is a first descendant of r (that is, a, r, and b lie on a common
generated path). If some frond x --,y with r __< x < b had a > y, the triple on
TSTACK corresponding to (h, a, b) would have been deleted from TSTACK when
the frond was explored (A or F in PATHSEARCH). Similarly, if some frond
x --,y with a < y < b and b-, w x had LOWPT1 (w) < a, the triple on
TSTACK corresponding to (h, a, b) would have been deleted by the HIGHPT test
when vertex y was examined (D in PATHSEARCH). It follows that {a, b} is a

type 2 separation pair by Lemma 13.
Conversely, suppose G has a type 2 pair {a, b}. Let bl, .’., b, be the sons of b

in the order they occur in A(b). Let i0 min {i[LOWPT1 (bi) > a}. If io exists,
then (bio + ND (bio), LOWPT1 (b), b) will be placed on TSTACK when tree arc
b ---, b is explored. This triple may be deleted from TSTACK, but it will always be
replaced by a triple of the form (h, x, b), with LOWPT1 (b) > x > a. Eventually
such a triple will satisfy the type 2 test, unless some other type 2 pair is found first.
If io does not exist, let (i, j) be the first edge traversed after b is reached such that
a < and j =< b. If j, then (i,j, i) will be placed on TSTACK, possibly modi-
fied, and eventually selected as a type 2 pair, unless some other type 2 pair is
found first. If --. j, then (j + ND (j), LOWPT1 (j), i) will be placed on TSTACK,
possibly modified, and eventually selected as a type 2 pair unless some other type 2
pair is found first. Thus if some type 2 pair exists, at least one type 2 pair will be
found by the algorithm. It follows that the type 2 test works correctly, and the
algorithm splits a multigraph if and only if a separation pair exists.

The lemma follows by induction on the number of edges in G. Suppose the
lemma is true for graphs with fewer than k edges. Let G have k edges. If G cannot
be split, the algorithm works correctly on G by the argument above. If G can be
split, it will be split. Consider the first split performed by the algorithm, producing
split graphs G1 and G2. The behavior of the algorithm on G is a composite of its
behavior on G1 and G2. Since the algorithm splits G1 and G2 correctly by the
induction hypothesis, it must split G correctly. The lemma follows by induction.
Figure 5 gives the contents of ESTACK and TSTACK when the first separation
pair (8, 12) in the graph of Fig. is detected.

LEMMA 15. The triconnected components algorithm processes a graph G with
V vertices and E edges in O(V + E) time.

Proof. The number of edges in a set of split components of G is bounded by
3E- 6, by Lemma 1. All steps except finding split components thus require
O(V+ E) time, by the results of the last two sections. Consider execution of
algorithm SPLIT. Each edge is placed on ESTACK once and deleted once. The
depth-first search itself requires O(V + E) time, including the various tests. The
number of triples added to TSTACK is O(V + E). Each triple may only be modi-
fied if it is on top of the stack. Thus the time necessary to maintain TSTACK is
also O(V + E) and SPLIT requires O(V + E) time.
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(12,8,12)
(12,8,12)
EOS

(3,, )
TSTACK

8,9
9,10

I0,11
9,11
8,11
10,12
9,12
8,12
1,17_.
5,13
2,13
1,13

ESTACK

First component.
Algorithm adds

virtual edge (8,12),

FIG. 5. Contents ofTSTACK and ESTACK when first separation pair {8, 12} is detected

This completes our presentation of an O(V + E) triconnected components
algorithm. This algorithm may be used in the construction of an O(V log V) algo-
rithm for testing isomorphism of planar graphs 3]. The algorithm is not only
theoretically optimal (to within a constant factor) but practically useful. The split
components algorithm has been implemented in ALGOL W and run on an IBM
360/65 computer. Experiments show that the algorithm can handle graphs with
around 1000 edges in less than 10 seconds.

REFERENCES

[1] A. ARIOSHI, I. SHIRIKAWA, AND O. HIOSHI, Decomposition ofa graph into compactly connected
two-terminal subgraphs, IEEE Trans. Circuit Theory., 18 (1971), pp. 430-435.

[2] J. Buqo, K. STWIGLrrZ, AqD L. WEINBEtG, A new planarity test based on 3-connectivity, Ibid.,
17 (1970), pp. 197-206.

[31 J. HO’COFT ANt) R. TARJAY, Isomorphism ofplanar graphs, Complexity of Computer Computa-
tions, Plenum Press, New York, 1972, pp. 143-150.

[4] J. LEDERGERG, DENDRAL-64: A system for computer construction, enumeration, and notation of
organic molecules as tree structures and cyclic graphs H: Topology of cyclic graphs, Interim
Report on the National Aeronautics and Space Administration, Grants 681-60, NASA CR
68898, STAR N-66-14074, 1965.

[5] R. TAJAy, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-159.
[6] J. HOPCROFT AND R. TARJAN, Efficient algorithms for graph manipulation, Comm. ACM., to

appear.
[73 R. TARJAN, An efficient planarity algorithm, Rep. STAN-CS-244-71, Computer Science Dept.,

Stanford Univ., Stanford, Calif., 1971.
[8] J. HOt’CROFT AND R. TARJAN, Efficient planarity testing, Tech. Rep. 73-165, Dept. of Computer

Science, Cornell University, Ithaca, New York, 1973.
[9] R. TARJAN, Finding dominators in directed graphs, Tech. Rep. 73-163, Dept. of Computer Science,

Cornell Univ., Ithaca, New York, 1973.
[10] D. J. KLEITMAN, Methods for investigating the connectivity of large graphs, IEEE Trans. Circuit

Theory., 16 (1969), pp. 232-233.
[11] S. A. Coo, Linear-time simulation ofdeterministic two-waypushdown automata, IFIP Congress 71

Foundations of Information Processing, Ljubljana, Yugoslavia, North Holland Pub. Co.,
Amsterdam, pp. 174-179.

[12] G. BUSACKER AND T. L. SAAT, Finite Graphs and Networks." An Introduction with Applications,
McGraw-Hill, New York, 1965.

[13] F. HARAR’’, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[14] S. MACMYE, A structural characterization of planar combinatorial graphs, Duke Math. J.,

3 (1937), pp. 460-472.



158 J. E. HOPCROFT AND R. E. TARJAN

[15] W. T. TUTTE, Connectivity in Graphs, Univ. of Toronto Press, 1966.

[16] J. EDMONDS AND W. CUNNINGHAM, private communication, 1972.
[17-j R. TARJAN AND J. HOPCROFT, Finding the triconnected components ofa graph, Tech. Rep. 72-140,

Dept. of Computer Science, Cornell University, Ithaca, New York, 1972.
[18] L. AUSLANDER AND S. V. PARTER, On imbedding graphs in the plane, J. Math. Mech., 10 (1961),

pp. 517-523.
19] A.J. GOLDSTEIN, An efficient and constructive algorithmfor testing whether a graph can be embedded

in a plane, Graph and Combinatorics Conference, Office of Naval Research Logistics Proj.,
Contract NONR 1858-(21), Dept. of Math., Princeton Univ., 1963, 2 unnumbered pp.



SIAM J. COMPUT.
Vol. 2, No. 3, September 1973

DUALITY APPLIED TO THE COMPLEXITY OF MATRIX
MULTIPLICATION AND OTHER BILINEAR FORMS*

J. HOPCROFT AND J. MUSINSKI’

Abstract. The paper considers the complexity of bilinear forms in a noncommutative ring. The dual
of a computation is defined and applied to matrix multiplication and other bilinear forms. It is shown
that the dual of an optimal computation gives an optimal computation for a dual problem. An n x m
by m p matrix product is shown to be the dual of an n p by p m or an rn n by n p matrix
product, implying that each of the matrix products requires the same number of multiplications to
compute. Finally, an algorithm for computing a single bilinear form over a noncommutative ring with a
minimum number of multiplications is derived by considering a dual problem.

Keywords. algorithms, bilinear forms, computational complexity, duality, matrix multiplication.

1. Introduction. This paper is concerned with determining the minimum
number of multiplications necessary to compute certain bilinear forms over a
noncommutative ring. We define the dual of a set of expressions and the dual of a
computation in such a manner that the dual of the computation of a set of expres-
sions is a computation for the dual of the expressions. Furthermore, a computation
and its dual both use the same number of multiplications. This implies that the
minimum number of multiplications necessary to compute a set of expressions is
the same as that to compute its dual.

The concept of duality is applied to matrix multiplication. The dual of a set
of expressions representing the multiplication of two matrices is a set of expressions
representing another matrix multiplication problem where the dimensions of the
matrices have been permuted, Thus we are able to show that the minimum number
of multiplications necessary to compute an n m by m p matrix product is the
same as that required to compute an n p by p rn or an rn n by n p product.
Optimal programs for computing 2 n by n 2 and 3 3 by 3 2 matrix
products follow from previous results. Dual statements of several interesting
theorems are presented. Finally, it is shown that Strassen’s algorithm for 2 2 by
2 2 matrix multiplication is unique to within a linear transformation.

2. Definition of a computation. Let cg be a commutative ring with a unit
element and let be a finite set of indeterminants. Let be the noncommutative
ring obtained by extending c by multinomial expressions of the elements of .
Throughout this section and the next, F will denote the set of bilinear forms

c,,ax,l 1 <= <= p, a, Xk e ll, Cij e (9
j=lk=l

Similarly, a and x will denote the column vectors (al,a2, .’., a)T and (Xl,
X2 Xn) T.
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It has been pointed out that the concept of duality can be developed from Fiduccia [2] and is
implicit in the tensor formulation of complexity in Strassen [7].
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We consider the notion of a computation (see Ostrowski [5]) as a sequence of
instructions fi gi O hi where O stands for one of the binary operations of multi-
plication, addition or subtraction. Each fi is a new variable, and each gi or hi is
either an element of cg U ff or a previously computed fj. A multiplication of two
elements of, neither of which is in cg, is assumed to take one unit of time. All other
operations require no time to perform. The motivation for counting only multiplica-
tions between elements in c is that in applications, the elements of ff may be
large matrices (Strassen [6]), and thus the scheme is not only mathematically
tractable but also reflects the actual computation time within a constant factor.
It is well known that without division, computations of bilinear forms can be
reduced to computing linear combinations of products of pairs of linear forms.
This motivates the following definition of a computation. Express2 the set of ex-
pressions F as (aX), where X is an m p matrix with elements of the form= lCiXi, cCg. A computation of F is an expression of the form M(Pa. Rx),
where M, P and R are matrices of dimensions p q, q x m and q n, whose
elements are from c. The symbol, indicates element by element multiplication, and
M(Pa. Rx) (arX). Since the straightforward method of evaluating M(Pa. Rx)
uses q multiplications between elements in 5 rg, the computation is said to have
q multiplications.

3. Duality. This section defines the dual of a set of bilinear forms and the dual
of a computation. It is then shown that the dual of any computation of F computes
the dual of F.

Let b be the column vector (bl,b2, ..., bp)T, bieO. The, left dual of F is the
system ofexpressions given by (bTxT)T. Let M(Pa. Rx) (aTX)T be a computation
of F. The P-dual of the computation is the computation pT(MTb. Rx).

LEMMA 1. The P-dual of any computation of a system of expressions F computes
the left dual of F.

Proof. Let M(Pa. Rx) (aTX)T be a computation of F. We must show that
pT(MTb. Rx) is a computation of (bTXT)T. Let D be a diagonal matrix whose
diagonal .elements are the elements of the column vector Rx. Then (M(Pa. Rx))T

(pa)TDMT. Since the elements of P commute with the elements of a, (Pa)T
aTpT. Now aTpTDMT aTx for all a implies pTDMT X, which in turn im-

plies bTMDP bTxT for all b. Thus (MTb)TDp bTXT, implying pT(MTb. Rx)
(brXr)r.
In a similar manner, the system of expressions F can be expressed as Ax

where A is a p x n matrix with elements of the form i= ciai, ci ecg. The right
dual off is the system ofexpressions given by Arb. IfM(Pa. Rx)is a computation of
F, then the R-dual of the computation is the computation Rr(Pa. Mrb). The R-dual
of a computation of a system of expressions F computes the right dual of F.

LEMM 2. The R-dual of any computation of a system of expressions F computes
the right dual of F.

Proof. The proof is analogous to that of Lemma 1.
THEOREM 3. There is a computation for the system of expressions computed by

M(Pa Rx) with q multiplications ifand only if there is a computation with q multiplica-

By (arX) we mean the matrix whose ijth element is the jith element of arX. Since the elements
are from a noncommutative ring rather than a field, (arX)r - Xra in general.
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tionsfor each of the systems ofexpressions computed by PT(Mrb Rx) Rr(Pa Mrb)
Rr(Mrb Pa), Pr(Rx. Mrb) and M(Rx. Pa).

Proof. The result follows from the fact that a computation, its R-dual and its
P-dual each have the same number of multiplications.

Let M(Pa. Rx) be a computation of F, and let c be a column vector such that
M(Pa. Rx) c. Let T, U, V be p p, m m, n n matrices, respectively, with
elements from cg. A transformation of a vector c of bilinear forms is the result of
replacing each element of a and x by the corresponding elements of Ua, Vx in Tc.
A transformation ofthe computation M(Pa. Rx) is the computation TM(PUa. R Vx).

LEMMA 4. The transformation of a computation of c is a computation of the

transformation of c.
COROLLARY 5. If C’ is a transformation of c, then c’ can be computed in q multipli-

cations if c can be computed in q multiplications. If T, U and V are nonsingular, and
c’ can be computed in q multiplications, then c can be computed in q multiplica-
tions.

Note that the concept of duality can be generalized. Up until now, cg and
have been rings. However, the existence of an additive inverse is not needed.

Example 1. Let cg Z, the integers, let {x1,x2,... xn} where the
x are elements of Z, and replace addition and multiplication by minimum and
addition, respectively.

Example 2. Let cg {0, 1}, let {x,x2, ..., x,,} where the x are
elements of oK, and replace addition and multiplication by the Boolean operations
OR and AND.

Example 3. Let cg Z, let {x,x2,... x,} where the x are k x k
matrices with elements from cg, and replace addition and multiplication by matrix
addition and matrix multiplication.

4. Matrix multiplication. Let A, B and C be m n, n p and m p matrices
whose elements are from ft. We will show that there is a computation of AB with
q multiplications if and only if there are computations for

ArC, BrAr, BCr, CrA, CBr

with q multiplications. In other words, the number of multiplications needed to
compute the product of an m n matrix with an n p matrix is the same as that
required to compute an n m by m p, p n by n m, etc. If one uses the or-
dinary algorithms which require nmp multiplications, then the result is not sur-
prising. However, the result claims that no matter what method is used, the mini-
mum number of multiplications is the same.

Let a, b and c be column vectors whose elements are those of A, B and C,
respectively, in row order (e.g., a (a11, a12, aln, a21, amn)T). The ijth
element ofAB is 7,- aikbkj. Therefore, there exist matrices M, P and R of dimen-
sions mp q, q mn and q np, whose elements are from cg, such that M(Pa Rb)
is a computation for AB.

THEOREM 6. The following statements are equivalent.
(a) M(Pa. Rb) computes AB in row order using q multiplications.
(b) Pr(MTc. Rb) computes CBr in row order using q multiplications.
(c) Rr(Mrc Pa) computes (CrA)r in row order using q multiplications.
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(d) M(Rb. Pa) computes (BrAt)r in row order using q multiplications.
(e) pr(Rb. Mrc) computes (BCr)r in row order using q multiplications.
(f) Rr(pa Mrc) computes Arc in row order using q multiplications.
Proof. We will prove only that (a)= (b). Let D be the mn mp matrix

I 10B 0 Then M(Pa. Rb) computes AB in row order implies that M(Pa. Rb)
00 B

(arD)r by definition of a computation. This in turn implies that Pr(Mrc. Rb)
(crDr)r by Lemma 1. Thus pr(Mrc. Rb) computes CBr in row order.
COROLLARY 7. The minimum number of multiplications required to multiply

m n by n p matrices without using commutativity is the same as to multiply
n mbym p,n pbyp m,p mbym n,p nbyn m, orm pby
pxn.

Theorem 6 leads to new algorithms for multiplying various size matrices
together. Some of the new algorithms are optimal, others are at least improvements
over the best currently known. For example, in [4] it is shown that
[(3pn + max (n, p))/2 multiplications suffice for p 2 by 2 n matrix multiplica-
tion. It follows that (3pn + max (n, p))/2 multiplications suffice for 2 p by p n
matrix multiplication. Since 7n/2 multiplications are necessary and sufficient for
2 2 by 2 n matrix multiplication 4], it follows that 7n/2 multiplications are
necessary and sufficient for 2 n by n 2 matrix multiplication. Similarly, since
15 multiplications are necessary and sufficient for 3 2 by 2 3 matrix multiplica-
tion, 15 multiplications are necessary and sufficient for 3 3 by 3 2 matrix
multiplication.

The number of multiplications necessary to compute the product of two 3 3
matrices is an interesting open problem. If 21 or fewer multiplications are sufficient,
then the asymptotic growth rate of Strassen’s method [6] could be improved. An
examination of 3 2 by 2 3 and 3 3 by 3 2 matrix multiplication
algorithms may shed some insight on the development of an algorithm for 3 3
by 3 3 matrix multiplication.

Let A, X, C, and Y be 3 2, 2 3, 3 3 and 3 2 matrices whose elements
are from ft. Then

AX=

ml + m2 --m2 m3 + m7 ms
m m4 + m8 m9 m3 + m4
m2 m6 + ml 3 m14 -m4 m + ml 0 mll

-m3 m6 + mll m Jms + m6

where

m (all al2)Xll

m2 al2(Xll q- x21

m3 a21x12

m4 a22x22

m a31(x13 -+- X23
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m6 (--a31 -}- a32)x23

m7--(all + a21)(Xll -+- x12 + x21 + x22)

ms (all a12 -+- a21)(Xll -+- x21 -{- x22)

m9 (all a12 -1- a21 a22)(x21 + x22)

ml0 (6/22 21- a32)(X12 21- X13 -’{’- X22 -- X23

mll (a22 a31 + a32)(-k-x12 H- x13 + x23

m12 (--a21 + a22 a31 -+- a32)(+ x12 --Ji- x13

m13 ----(a12 -+- a31)(Xll x23

m14 (--al 2 a32)(x21 --}- x23

m15--(all + O31)(Xll + X13)

0 0 0

0 0 0

0 0 0 -1 0

0 0 -1 0 0

0 0 0

0 -1 0 0 -1

0 0 0 -1

0 -1 -1 0

0 0

0

0 -1 -1

-1

-1

0

0

0 -1

0 0

0 0

-1

0

0 0

0 0

0 0

0 0

0

-1

0 0 0

0 0 0

0 0

0 0

0 0

0 0 -1

0 0

0 0

-1 0

0

0

0

0

0

0

-1

0 0 0

0 0 0

0 0 -1

0 0

0 -1 0

0 0

0

0

0

0

0

0

-1

-1

0 0

0 0 -1

0 0

0 0 0

-1 0

0 0 0

0 -1

0 0 0

0 0 0

0 0

0 0

0 0

0

0

0

0

R=

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0 0

0 -1

0 0 0

-1 0

0 0 0

0 0 0

0 0

0 0

0 0 0

0 1 0

0 0 0

0

0 0

0 0

0

0

0

0 0 0

0 0

0 1 0

0 0

0 0

0 -1

0 0

0

0

0

0

0 0

0 0

1

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0

0

0 0

0 -1

0

0 0

0

0

0

0

0

0

0
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then M(Pa. Rx) computes AX in row order with 15 multiplications. By Theorem 6,
Pr(Mrc. Ry) is an optimal algorithm for CY. Thus

BY=

where

nx + n, + ns + n9 q- n5

173 q- n7 q- n8 q- n9 //2

//5 //6 //11 //12 q’- //13 q- //15

m//1 q- //2 //8 //9 q- //13 //14

n4 n9 + nlo q- nil q- n12 ’//6 q- //10 .qt_ F/ll

__
nl 2 //14

n (c c13 c21)Yll

n2 (cll c12 c31)(Yll + Y12)

n3 (-c12 + c22 c23)Y21

/’/4 (-c21 q- c22 c32)Y22

//5 (-c13 c32 -[- c33)(Y31 q- Y32)

//6 (-c23 c31 -}- c33)Y32

n7 c2(y + Y2 + Y21 + Y22)

n8 --(--C12 q c21)(Yll q- Y12 -}- Y22)

n9 --c21(Y12 q- Y22)

nlo 32(Y21 q- Y22 q- Y31 nt- Y32)

n (c23-- c32)(Y21 -+- Y31 -+ Y32)

//12 --C23(Y21 q’- Y31)

hi3 (--13 ’}- C31)(Yll Y32)

n14 --c31(Y12 -ff Y32)

//15 Cl3(Yll + Y31)

The algorithm for AX is the union of three optimal algorithms that compute

a21 a22 x21 x22 a31 a32 21 x23 a31 a32 22 x23

respectively, such that each diagonal component of AX is computed with exactly
two multiplications. Furthermore, both algorithms which compute a given diagonal
component compute it with the same two multiplications. Each of the three al-
gorithms uses seven multiplications, but each pair ofalgorithms has two multiplica-
tions in common. Thus only 15 multiplications are used in computing AX.

The algorithm for C Y is the dual of the algorithm for AX. Thus, there is a
dual construction for it. This construction is described briefly below and followed
by an example. Let W be the 3 x 2 matrix such that W C Y. Construct optimal
algorithms that compute

and

C21 C22 Y21 Y22_] W21 c23Y31 W22 C23Y32

C31 C33 Y3 Y32_] W31 c32Y21 W32 C32Y22

C32 C33 Y3 Y32 W31 c3xYxl W32 c3Y2_]

such that each cii appears in exactly two linear combinations which are right-hand
sides of multiplications in each of the two algorithms involving cii. Furthermore, if
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and fl are the left-hand sides of the two multiplications in one algorithm, then
and/3 are the left-hand sides in the other. Each pair of multiplications with the

same left-hand sides whose right-hand sides contain cii are merged by the formula

merge ((cii + /1), (Cii -+- /2)o0---(cii 21- 11 -1- 12)z,

where 11 and 12 are linear combinations of the components of C. Each of the three
original algorithms contains seven multiplications, and between each pair of
algorithms, two pairs of multiplications are merged. Thus the composite algorithm
uses 15 multiplications in computing C Y.

The following example should clarify the above description.

Example.

21 C22__] Y21 Y22 --n q-- n4. -+- n + n7 --n + n3 -k- n -+- n 7

C31 C33 Y31 Y321 -ns + nlo + n12 q- n14.

n8 /’/11 -1- /’/13 n14.[
--n8 q- nll -k- n12 .qt_ /’/14.

C32 C33 Y31 Y32_] --n15 -+- nit -+- r/19 -q- n21 n16n17 +_ n18n18 -+- n20 + n21],,
where

nl --c12(Y12 q-- Y22)

n 2 (Cll c12)Y12

n3 (c21 c22)(Y21 Y22)

n4. c21(Yll Y12 + Y21 Y22)

n5 (c 2 + C22)Y21

/’/6 (Cll + C21)Yll

n7 --(c12 -- c21)(fl12 Y21 -k- Y22)

ns 13(Yll at- Y31)

n9 (Cll c13)Yll

no (c31 C33)(--Y31 + Y32)

nil C31(--Yll + Y12 Y31 -- Y32)

/’/12 (C13 + c33)Y32

n13 (Cll + c31)Y12

n14. --(c13 -[- c31)(Yll + Y31 Y32)

n15 23(Y21 + Y31)

hi6 (c22 c23)Y21

nl (--c32 + c33)Y32

hi8 C32(--Y22 Y32)

n9 (--c23 c33)(--Y31 + Y32)

/’/20 (--c22 c32)(Y21 Y22)

/’/21 --(23 %" C32)(Y21 + Y32)
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Then

CY=

ml m4 q- m6 mv q- ms

ml q- m4 q- m5 + m7 + ml 3

m8 q- m9 q- mll q- ml2 m13 + m15

where

ml if- m2 if- m8 ml m12 1
-ml + m3 + m5 + m7 + m14 if- rn151--m 8 -+- mlo -+- mll q- m2 m14

m F/1

m2 merge(nz,n13) (Cll c2 + c31)Y12

m3 merge(n3, n20) (c21 c22 c32)(Y21 Y22)

m4 rt4

m merge(n5, nq) (c12 + c22 c23)Y2

m6 merge(n6, n9) (Cll c13 q-- c21)Yll

m r/7

m8 n8

m9 merge(n0, hi9 (--c23 if- c31 c33)(--Y31 q- Y32)

mlo rtl

ml merge(n2, nv) (c13 c32 + c33)Y32

m12 14

m13 15

m14 18

m15 21

It is hoped that the techniques used above to construct algorithms for 3 x 2
by 2 x 3 and 3 x 3 by 3 x 2 matrix multiplication can be applied toward develop-
ing an optimal algorithm for 3 x 3 by 3 x 3 matrix multiplication. To date, no
algorithm for the latter using less than 24 multiplications has been found. How-
ever, there is no indication that 24 multiplications is the minimum.

Let D be a 3 x 3 matrix with elements from . Then CD can be computed with
24 multiplications by partitioning the problem into a 3 x 2 by 2 x 3 and a 3 x
by x 3 matrix multiplication problem, or by partitioning the problem into a
3 x 3 by 3 x 2 and a 3 x 3 by 3 x problem. These two partitions result in dual
computations for 3 x 3 by 3 x 3 matrix multiplication. A third computation, also
with 24 multiplications, can be obtained by using both of the above combining
techniques. In this case, find optimal algorithms that compute

C21 C22_1 d21 d2 ,c31 c33 d31 d3
and 2 3 2

C32 C33 d32 d3
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SO that in each pair of algorithms there are two multiplications that are either the
same or can be merged into a single multiplication as demonstrated above. This
eliminates three multiplications, leaving 18. To these are added the six multiplica-
tions c13d32 c12(d23 -dll), (c23 + c13)d31 (c21 + c31)d13, c31d12, and c32(d21

d33). The computation of CD minus the above six multiplications is illustrated
below.

ml (Cll C12)dll

m2 c12(d21 + dll)

m3 c21d12
m4 c22d22
m --(ell %- c21)(dll %- dl 2 %- d21%- d22
m6 (Cll c12 %- c21 c22)(d21 + d22)

m --(Cll --c12 %- c21)(dll %- d21 + d22)

ms (c c3)dl

m9 c13(d31 + dll)

mlo c31(d13 %- d33)

ml (-c31%- c33)d33

m2 (c1 + c31)(dll + d13)

m13 (-el c33)(d31%- d33)

m14 (c13 %- c31)(dll d33
m15 c32(d23 %- d33)

m16 (-c32 %- c33)d33

m17 c23d32
m18 c22d22
m19 (c23 %- c33)(-d22 d23 d32 d33
m2o (--C22 %- C23 C32 %- c33)(-d22 d23
m21 (c23 c32 %- c33)(-d22 d23 d33
y merge(ml,m8) + m2 %- m9

Y12 --m2 m3 %- m5 m7

Y13 -mo + m12 mx merge(m,ms)

Y21 m4 m6 %- m7 m9 merge(ml, ms)

Y22 m3 + m4 + mv
Y23 --mlo m18 %- m2o m21 merge(m11,m16)
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Y31 --m9 m13 -t- m14 merge(m11,m16)

Y32 -mx5 m17 m19 -at- m2

Y33 merge(ml,m6) + m0 + m

5. Dual theorems. In addition to helping find optimal (or better) algorithms
for matrix multiplication, Theorem 6 or its more general form, Theorem 3, can be
applied to previously published theorems to yield new results. Below we list several
theorems with one dual theorem for each. Of course, in most cases, more than one
dual exists. We have arbitrarily chosen one for demonstration purposes.

Although Lemmas 8, 10, 12, and 16 are established results, and Lemmas
9, 11, 14, and 18 follow from Theorems 3 and 6, we present a proof for Lemma 18
in order to underscore their dual nature. For the sake of simplicity, the lemmas are
expressed for Z2, the integers modulo 2. Some are more general.

Before proceeding, we define a term used in many of the following lemmas.
A set of vectors Vl,/)2, Vp with elements from is nondependent if and only if
it is linearly independent mod . That is, if and only if ’= CV is a vector w
with elements from cg, each c an element of , implies that each c 0. Since an
expression can be considered to be a one-dimensional vector, the notion of non-
dependence applies also to expressions.

Lemmas 8 and 9, due to Winograd [9] and Fiduccia [1], respectively, are duals.
LEMMA 8. (Winograd). Let A be an m x n matrix whose elements are from ,

and let x (x l, x2, "", x,)r where x . If A has p nondependent columns, then
and computation ofAx requires at least p multiplications.

LEMMA 9. (Fiduccia). Let A be an m x n matrix whose elements are from ,
and let x be an arbitrary vector. If A has p nondependent rows, then any algorithm
computing Ax requires at least p multiplications.

Lemmas 10, 12, and 16 are found in [4]. Lemmas 11, 14, and 18 are their
duals.

LEMMA 10. Let cff be a field, and let F {fl, "’’, fk, fp} be a set of ex-
pressions, where fl, J are nondependent and each can be expressed as a single
product. If F can be computed with q multiplications, then there exists an algorithm
for F with q multiplications in which k of the multiplications are j’ fk.

LEMMA 11. Let cg be afield and F be the set of expressions

coajBij <= <= p aj /, cij cg; Bi dijkXk dijk c, Xk I/I
k=l

where Bj Bpj, <= j <= t. Let B be the p x matrix whose ij-th element is

cijBij. If F can be computed with q multiplications and B has nondependent columns,
then F can be computed with q multiplications in which a l, ..., a appear in exactly
one multiplication each, and that multiplication has the form (aj + lj)Bj, where
lj " lija liji=t+

cg, j <= t.
LEMMA 12. Let A and X be 2 x 2 and 2 x n matrices, respectively, whose ele-

ments are from . If an algorithm for computing AX has k multiplications offorms
allo,(a2 + a2)fl, and (al + a2 + a21)7, then the algorithm requires at least
3n + k multiplications.
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COROLLARY 13. If T is the group of transjbrmations generated by the set of
transformations which:

(1) interchange two rows of A, two columns of X, or two columns of A and the
corresponding two rows of X,

(2) either add (subtract) row of A to row j of A, column of X to column j
of X, or add (subtract) column of A to column j of A and simultaneously
subtract (add) row j ofX to row of X,

then by applying transformationsfrom T, we also have similar theoremsfor
(a) (all + azl),(a12 + a21 + az2)fl,(all + a12 + a22)32
(b) (alx + alz)Z,(a12 + a21 + azz)/,(ala + a21 + a22)32
(C) (all + a12 -+- a21 -- a22)o,(a12 -- az1),(all + a22)32
(d) (az1),(a11 + azz)fi,(a11 + a21 + a22)7
(e) (a21 -- az2),(all + a12 + azz)/,(all -- a12 + 021)32
(f) alz,(all + azz)fl,(a11 + a12 + azz)7
(g) (a12 + azz)0,(a11 + a21 + azz)fl,(a11 + a12 + a21)32
(h) azz,(a12 + azl)fl,(al2 + a21 + azz)y.

LEMMA 14. Let A and X be 2 x n and n x 2 matrices, respectively, whose ele-
ments are j?om . If an algorithm jbr computing AX Y has k multiplications that
are used only in computing Yl 1, or only in computing Y12 and Yz 1, or only in computing
YI, Y12 and Y21, then the algorithm requires 3n + k multiplications.

COROLLARY 15. By applying transformations in T, we have similar theorems jbr
(a) y and Y21; ytz,yzl,and Y22; YI,Y2, and Y22
(b) YI and Y12; Y12, Y21, and Y22; Ytl, Y:zl, and Y2:
(c) yl,Y12,Yz,and Y22; Y12 and Y21; Yll and Y22
(d) Y21 Yll and Y22; Yll, Y21, and Y22
(e) Y21 and Y22; Yll, yaz, and Y22; Y11,YI2, and Y21
(f) Y12 Yl and Y22 Yll, Y12, and Y22
(g) Y12 and Y22; yll,yz,and Y22; Yl,Y2, and Y21
(h) Y22 Y12 and Y21; Y12, Y21, and Y22.
LEMMA 16. Let A and X be 2 2 and 2 n matrices, respectively, whose ele-

ments are from . Any algorithm for computing AX which has k multiplications of
types a 11, a 12fl, and (a + a 2)32 has at least 3n + k/2 multiplications.

COROLLARY 17. By transformations, we have similar theorems for a21 azzfl,
(a21 + a22)32 andfor(al + a21)o, (a12 -+- a22) (all ql_ al 2 + a2 .ql_ a22)32"

LEMMA 18. Let A and X be 2 n and n 2 matrices, respectively, whose ele-
ments are fi’om . Any algorithm for computing AX Y which has k multiplications
used only in computing YI Y12 or both has at least 3n + k/2 multiplications.

Proof. We first state some results without proofs.
(1) Let a,..., ap be n-vectors whose elements are of the form i=lcixi,

ci and xi . Then a 1, , ap are nondependent if and only if they are
linearly independent.

(2) Let C and D be rn n matrices whose elements are from . If C and D
have k and k 2 nondependent columns, respectively, then C + D has at
most k + k 2 nondependent columns.

(3) Let C be a 2 x n matrix whose elements are from . If C has k nonde-
pendent columns, then row or row 2 of C has at least k/2 nondependent
elements.
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Resuming the proof, we let m mk be the k multiplications which are
assumed to be used only in computing Ylx,Yl2 or both. Then
and Y12 M2 + F2, where M1 and M2 are sums of the m1,’", mk and

Yl M and F2 Y2 m2. Without loss of generality, we can assume

Gxand Hx, wherex [xll,xl,...,x,x]r, and GandH
M

are 2 x 2n matrices whose elements are of the form
Let G’ and H’ be the matrices resulting when we set a. a, 0. Matrix G’

hasatmostknondependentcolumnsbyLemma8. Since [Ylll =(G’+H’)x

G’ + H’ must have 2n nondependent columns. Hence by (2), H’ has at least 2n k
nondependent columns and by (3), row i, where is 1 or 2, has at least n k/2
nondependent elements. Therefore by (1), H has n k/2 elements in row of the
form j= lcjaj d- 2k-- dka2k’ Cj, d ec6, such that the j__ cjalj parts of each ele-
ment are linearly independent.

We can remove n + k/2 multiplications from Q by
(1) removing ml, rag,
(2) equating an appropriate choice of n k/2 elements in row of H to zero,

and solving for n k/2 alj s.
The new algorithm computes Y21 and Y22, which requires 2n multiplications.

Hence Q must have had at least 3n + k/2 multiplications.
COROLLARY 19. By transformations we also have theorems for
(a) Y21 Y22 Y21 and Y22
(b) Yll and Y21; Y12 and Y22; Yll,Y12,Y21, and Y22"
Theorems 3 and 6 and the preceding lemmas lead to the following lemmas for

2 3 by 3 n matrix multiplications (and hence for 2 n by n 3, 3 2 by
2 n, 3 nbyn 2, n 2by2 3, andn 3by3 2matrix multiplications).

LEMMA 20. Let A and X be 2 3 and 3 n matrices, respectively, whose
elements are from . Any algorithm for computing AX which has k multiplications
offorms allo,alzfl, (all + a12)7, al3t, (all d- a13), (a12 -q- a13)0, and (all -+- a12
-k- a3)t has at least 4n + 2k/3 multiplications.

Proof. The proof is similar to Lemma 16.
COROLLARY 21. Extend the definition ofT in Corollary 13 in the obvious way to

2 3 by 3 n matrix multiplication. Then by transformations in T, we have similar
results for

(a) a21 a22fl, (a21 -k- a22)/, a236, (a21 -k- a:z3), (a2:2 q-- a23)0, and
(a21 - a22 --]- az3)t

(b) (all + a21) (a12 + az2)fl (all + a12 + a21 + a22)7, (a13 + a23)6,
(all+ a13 + a21 + a23), (a12 q- a13 + a22 -k- a23)0, and
(all -+- a12 + a13 -k- a2 + a22 + az3)t.

COROLLARY 22. If n 3 and Q is an optimal algorithm for computing AX,
then k < 4.

COROLLARY 23. Let n 3 and let Q be an optimal algorithm for computing AX.
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Let SA be the set of all multiplications in Q that begin with

alx,a12,a11 + a12,a13,alx -t- a3,a2 q- a13,a1 -t- a2 nt- a13, a2x,

az2,a21 nt- a22,a23,a2 -at- a23,a22 -+- a23,a21 -+- a22 -at- a23,al + a2,a2 nt- a22

all -I- (/12 -t- a21 -t- a22 a13 -t-- a23, all nt- a13 nt- a21 -t- a23, a12 nt- a13 -+- a22 -+- a23,

alx + a12 + a3 -+- a21 + a22 + a23.

Then
(i) at most 12 multiplications of Q are in SA.
(ii) no two multiplications of Q that are in SA have the same left-hand side.

Proof.
(i) The result follows from Corollary 22.
(ii) Suppose some multiplication of Q is in SA. By applying transformations

from T, we can assume without loss of generality that multiplication has the form
al e. Set al 0. This removes at least one multiplication from Q. Algorithm Q
now computes

IXlIXI2X131X21 *22 X23
a21 a22 a23

x31 -32 x33

By Lemma 11, we can assume that setting a2 0 causes three multiplications to
disappear. The resulting computation is a 2 x 2 by 2 x 3 matrix multiplication
which requires 11 multiplications. Thus if setting a 0 removed more than one
multiplication, Q must originally have had 16 multiplications and hence was not
optimal. Therefore Q had only one multiplication of form

We will conclude this section by showing that Strassen’s algorithm for 2 x 2 by
2 x 2 matrix multiplication is unique to within a transformation of T (as defined
in Corollary 13). That is, every optimal algorithm for 2 x 2 by 2 x 2 matrix
multiplication can be obtained from any given optimal algorithm for 2 x 2 by
2 x 2 matrix multiplication by applying a transformation of T to the latter. Let A
and X be 2 x 2 matrices whose elements are from . Leta [a11,alz,az,az2T

and x [x11,x12,x21,x22] r. Let M, P, R be 4 x 7, 7 x 4, and 7 x 4 matrices,
respectively, whose elements are from , such that M(Pa. Rx) computes AX in
row order. The computation M(Pa. Rx) uses 7 multiplications, and hence is an
optimal algorithm.

LEMMA 24. For fixed P and R, M is unique.

Proof. Assume M(Pa. Rx) M’(Pa. Rx)where M’ is a 4 x 7 matrix whose
elements are from c and M - M’. Then there exists an equation m -I- -k- mk

0, k _> 1, where m is an entry of the column vector Pa. Rx. Thus m can be
replaced by (m2 + m3 + -+- ink), implying that AX can be computed with
6 multiplications. In [4] it is shown that 7 multiplications are required. Therefore,
M is unique.

TI4FOIZM 25. Any optimal algorithm Q for 2 x 2 by 2 x 2 matrix multiplica-
tion is unique to within a transformation of T.
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Proof Divide the multiplications in Q into two disjoint sets AA and SB, where
the multiplications in Sa have left-hand sides which can be mapped onto all by a
transformation in Tand the multiplications in SB have left-hand sides which can be
mapped onto all + a22 by a transformation in T. In [4] it is shown that an optimal
algorithm must have six multiplications from SA and one from Sn. Since any element
of Sn can be mapped to any other element of Sn by a transformation in T, we can
assume without loss of generality that Q has a multiplication of the form
(all %- a22)0 Lemmas 12 and 16 tell us that the remaining multiplications have
forms (a12 %- a22)02, (all %- a21)3, a224, (all + a12)5, (a21%- a22)6, all7.

Since the transformations of T preserve AX, any transformation that sends a ll

+ 6/22 into itself will send the set of remaining left-hand sides into itself. Thus we
can assume without loss of generality that

al 1%- a22

al 2 %- a22

(/11%- a21

Pa a22

6/11%- ale

6/21 +- 6/22

6/11

By the same reasoning and using duals of Lemmas 12 and 16, we can conclude
that the right-hand sides of the multiplications of Q must be a transformation of
{Xll %- Xzz,X21%- XZZ,Xll %- XlZ,Xzz,Xll %- Xzl,X12 %- Xzz, X11} Since for any
two sets of possible right-hand sides there exists a transformation in T that sends
one to the other without changing the set of left-hand sides corresponding to the
former, we can assume without loss of generality that

X11%- X22

X21%- X22

X11%- X12
WRx x22

Xll %- x21

x12 %- x22

Xll

where W is a 7 7 permutation matrix. We need only show that R is unique.
Somehow we must form the product a12x21 Hence one of the four multiplica-

tions (al 2 + a22)(X21%- X22),(a12 %- a22)(Xll %- x21),(all %- a12)(x21%- x22)and
(all %- aaz)(X11%- x21 must be present. Assume (a12 %- azz)(X11%- x21 is in Q.
Then (6/11 + alz)(X11%- X22) must also be in Q since this is the only way to cancel
the product a12x11 from (a12 %- azz)(X1 %- x21) and to introduce the term alzXz2
However, we cannot obtain 6/12x21 and 6/12x22 in separate expressions. Thus
(a12 %- azz)(X11%- x21 is not in Q. Similar arguments eliminate (al + a12)
(X21%- x22)and (all + aaz)(Xll %- x2), leaving (a12 + azz)(X21%- X22).
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Considering products involving a12,a21,x12,x21, we find that (a12 + a22
(X21 q’ X22), (all-3w a21)(Xll -]--x12 ), a22(Xll-31-x21), (all -JI-a12)x22, (a21
-q-a22)x11, all(X12 + X22 are in Q. This leaves (a + a22 to match with
(Xll _ql_ X22)"

Since the left and right-hand sides can match up only one way, R is unique.
Thus by Lemma 24, M is unique and thus the algorithm is unique to within a
transformation of T.

6. Single bilinear forms. Let al, "", a,,, xl, "’, x,, d be in and let
C ll C 12, ", C,.. be in g. Let a [aa, am] r Ix Xm] r and d [d]X-- 1

In this section we develop an effective procedure which will yield an optimal
algorithm for computing a single expression = ’= c,aa,xa. Vari [8] accom-
plishes the above, provided that j=, i= 1CijaiXi 0 if and only if a xj 0
for all i, j. Vari has subsequently removed this condition. Using Theorem 3, we
give a second proof.

THEOREM 26. There exists an effective procedure which yields an optimal
algorithm jbr computing the expression= 2i= 1CijaiXj"

Proof. Theorem 3 tells us that an optimal algorithm for computing

Z= im= 1CijaiXj is the P-dual of an optimal algorithm for computing the set of
expressions S {= c,a dxali 1, ..., m}. The minimum number of multiplica-
tions needed to compute this set of expressions equals the maximum number of
nondependent expressions in the set {=1 c,axali- 1, ..., m}. Clearly, then, we
can find matrices M, P, R of appropriate dimensions such that M(Pd. Rx) com-
putes S with the minimum number ofmultiplications. Then pr(Mra. Rx)computes
im= 2j= 1CijaiXj with the minimum number of multiplications.
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HOW TO MAKE ARBITRARY GRAMMARS LOOK LIKE
CONTEXT-FREE GRAMMARS*

WALTER J. SAVITCH]"

Abstract. Normal form theorems which factor arbitrary phrase-structure grammars into context-
free grammars and "a little more" are presented. Every phrase-structure grammar is proven equivalent
to one in which each production is either context-free or pure erasing. A pda-like machine is shown
to characterize the phrase-structure languages.

Key words, phrase-structure grammar, normal form theorem, recursively enumerable set, context-

free grammar, pushdown automata, bracketed grammar.

Introduction. Three normal form theorems for arbitrary phrase-structure
grammars are presented one in terms of grammars, one in terms of machines, and
the third algebraic in nature. In each case the goal is to make the grammars look
as much like context-free grammars as possible. By phrase-structure grammars we
mean the type-0 grammars of Chomsky. So, we will be analyzing parsing algorithms
for arbitrary recursively enumerable sets.

In order to establish the notation used, we will give an informal definition of
phrase-structure language. Formal definitions of this and those other terms, used
without definition, may be found in Hopcroft and Ullman [6]. In any event, it is
always the commonly used definitions that we will have in mind. A phrase structure

grammar (psg) is a four-tuple G (V, E, P, S) such that V and Z; are finite sets of
symbols called syntactic variables and terminal symbols, respectively. S V is
called the start symbol. P is a set of productions (rewrite rules) of the form /,
where and/3 are in (V LIE)* and is nonempty. The language generated by G,
denoted L(G), is the set of all strings over E which can be obtained from S by
finitely many applications of the rewrite rules. Two grammars are equivalent if
they generate the same language.

1. Grammars.
DEFINITION. A psg G (V, E, P, S) is said to be in normal form if every pro-

duction is in one of the following forms.
(i) (context-free) A - for A V and (V U E)*
(ii) (pure erasing1) AB - for A, B V.
We wish to show that every psg can be put in normal form. We will actually

prove that every psg can be put into a stronger normal form.
DEFINITION. A psg G (V, E, P, S) is said to be in strong normal form if there

is a partition of V into three sets, Vcy, and 17, such that every production is in
one of the following forms.
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The empty string is denoted by e.
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(i) A for A e Vcy and a e(V U Z)*
(ii) AB --, for A e and B e . Elements of U are called cancellation

variables.
If AB --, , then A and B may be thought of as inverses that cancel each other

out. If the grammar is in strong normal form, then the cancellation is one-sided in
a very strong sense. If B is a right inverse for A, then B is never a left inverse for any
variable.

THEOREM 1. Every phrase-structure grammar is equivalent to a grammar in
strong normal form.

In order to prove Theorem 1, we will need the following lemma. This is a
standard alternative characterization of psg.

LEMMA 1. Every psg is equivalent to a grammar in which every production is in
one of thefollowingforms, where A, B are syntactic variables, and is any string of
allowable symbols.

(i) BA aA (right context only)
(ii) AB --, Aa (left context only)

(iii) B --, (context-free).

Proof of Theorem 1. Let G’ (V, Z, P, S) be an arbitrary psg. We will con-
struct an equivalent psg, G, which is in strong normal form. The construction is
similar to one in Peters and Ritchie [7].

We assume G is in the form guaranteed by Lemma 1. Define the new psg
G’= (V’, Z;, P’, S)as follows. V’= V U 1 [-J 1 J 2 [’-j 2, where 1, 1, 2 and
V2 are mutually disjoint sets of new symbols. Each of these four sets will be indexed
by V. So, in effect, we have five distinct copies of V. Notationally, this is indicated
as follows. IfA e V, then 1 will denote the element of 1 which is associated with A.
G’ has the same start symbol and terminal alphabet as G. P’ consists of all produc-
tions of the following form.

(1) AIA2 e. and A2A for all A e V.
(2) A AIA and A --, AI for all A e V.
(3) B --, A2e, for all A, B e V and e (V U Z)* such that AB -, Ae is in P.
(4) B cA2, for all A, B e V and z e (V U 2;)* such that BA eA is in P.
(5) B --, e if B e V and B -, e is in P.

Clearly, G’ is in strong normal form. It remains to show that G and G’ are
equivalent. A straightforward induction on the number of steps in a derivation
shows that L(G) is included in L(G’). For example, a derivation step AB Ae in G
is accomplished in G’ by the three steps AB A.1B A.12 =*" Ae. Thus it
remains to show that L(G’) is included in L(G). To show this we will need one more
lemma. The notation will be as follows.

DEFINITION. Let and 7 be arbitrary strings of terminal and nonterminal
symbols from G’. A derivation e 1 :=" 2 == =: n 7 in G’ is said to be a
quick-cancel derivation provided that any occurrence of a cancellation variable
that appears in more than two fl ’s also occurs in ft, . In other words, cancellation
variables never wait to cancel out.

LEMMA 2. Let and 7 be strings of terminal and nonterminal symbols of G’ such
that contains no occurrences of cancellation variables. If &, 7 in k steps in G’,
then 7 in G’ by a quick-cancel derivation of k steps.
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We defer the proof of Lemma 2 for a moment and use Lemma 2 to show
that any G’ derivation can be replaced by a G derivation. Specifically, to show L(G’)
is included in L(G), we prove the following result by induction on the number of
steps in the derivation.

Result. For any string 7 of terminal and nonterminal symbols of G, if S : 7,
in G’, then S 7 in G.

The base step of the induction is trivial. Suppose S 7 in G’ and assume
inductively that the claim is true for all shorter derivations. By Lemma 2, we may
assume that S 7 is a quick-cancel derivation. If the last step in the G’ derivation
S 7 is not an erasing rule, then a simple application of the induction hypothesis
shows that S 7 in G. So we may assume that the G’ derivation decomposes as
follows"

S fiABb fia2Bb fla2,Bb flaBb 7,

or some minor variation on this. A and B are single sentential variables. Since the
derivation is quick-cancel, , fl and 6 contain only symbols of the original grammar
G. By the induction hypothesis, S AB6 in G. Also, AB --, aB is a production
of G. So, S AB6 B6 7 in G, and the induction is complete. All that
remains is to prove Lemma 2.

Proof ofLemma 2. The proof is by induction on k, the number of steps in the
derivation : 7. The basis of the induction is immediate, since any one-step
derivation is already a quick-cancel derivation. Suppose 7 in G’ in k steps and
assume, inductively, that Lemma 2 is true for all shorter derivations. The derivation
a 7 decomposes to a lA2 :: 12 : 7, where A fl is the first rule used.
If fl contains no cancellation variables, then a simple application of the induction
hypothesis to _1/(2 7 gives the desired result._So, assume fl 6Cj, j or_ 2.
The case a Cj5 is similar. If this occurrence of Cj appears in 7, then a lbCja2
: ICj2 7, where a16 1 and (z 2 :" 2" In this case, the result follows by
applying the induction hyEothesis to a16 1 and (2 : 2" So we are left with
the case a alA2 := 1bCj2 : 7, and this Cj does not occur in 7.

In this case,

zlA2 I(Cj2 : lCjCi2 (Xl(2 : 7,

where a16: a’ and a2 Ca2. Since the cancellation is one-sided, we may
postpone the application of the rule CjCg e to near the end of the derivation.
The only rules it must precede are certain other erasing rules. Specifically, we may
rearrange the derivation a : 7 to get it in the form

a vr v’AnA A IBIB2 Bnrl’: V’rl’ 7,

where

v :, v’AnA A1, tl : BxB2 Bnrl’ and AiB ,
for 1,2 ..., n. (Take v alA, r/= a2, A1 Cj and B1 Ci.) Now, by the
induction hypothesis, v:v’AnAn_ A1 and rl:B1B2... Bnrl’ by quick-
cancel derivations. It is easy to combine these two quick-cancel derivations
together to get a quick-cancel derivation of a vq v’q’ 7 once the following
claim is established.
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Claim. The quick-cancel derivation v v’A,,A,_ A1 may be rearranged
to get a quick-cancel derivation of the form

v . viA vzA zA :g:," ::%" v A A e A :, v,,A,,A A

v’A,,A,,_ A1.
Also, r/, BxB).... B,rI’ may be similarly rearranged to produce the B’s in the order
B1, Be ..., B,,.

Consider v v’A,A,_ A The other derivation is treated similarly. The
claim follows from the fact that all the Ai’s are one-sided inverses canceling in the
same direction. More precisely, suppose that Ak, for some k > 1, is produced
before Ax. Then v , HC/ze /zH3AkHe, and #e A,-IA,-a A1. In this case,
we can get the same final string by

Y : PlCfi2 :/21CAk_ A1 ="/Al3AkAk-1 A1 : v’ A,A,,_ A1
and this is still a quick-cancel derivation. So, we can insure that A is produced
first. Similarly, we can insure that A e is produced second, and so forth. This
establishes the claim.

The final quick-cancel derivation of z , V looks like

O Vr/ : V A1S r/1 =" Vlr/1 : veAeBz r/ 2 =, v2r/2 : : v A B r/ v r/ 7.

This completes the proof of Lemma 2 and of Theorem 1.
In the process of proving Theorem 1, we actually established the following

slightly stronger normal form result.
COROLLARY 1. Every psg is equivalent to a grammar in strong normal form in

which each context-free production is of one of thefollowing forms"

A, A or A,

where contains no cancellation variables, and . (, are the same as
in the definition of strong normal form.)

Grammars in strong normal form are very much like the bracket grammars
of Harrison and Schkolnick [5. Our cancellation variables correspond to the
brackets of Harrison and Schkolnick. Santos 8 has shown that every recursively
enumerable language can be generated by a general two-type bracket grammar.
Corollary says that every recursively enumerable language can be generated by
what could naturally be called one-type bracket grammars. Thus the corollary
may be viewed as a strengthening of Santos’ result. A simple alternate proof of
Santos’ result can be constructed based on this corollary.

2. Machines. A grammar in normal form is structurally very similar to a
context-free language. As such it can be parsed in much the same way a context-
free language can be parsed. In particular, there is a device, analogous to a pda,
which does the parsing in a natural way. The device is called a cancellation push-
down automata (cpda) and can be described, informally, as follows. It consists of
a nondeterministic pda with a second pushdown store. The second pushdown store
is called the auxiliary pushdown store. The machine may write in the auxiliary
pushdown store but may not read in it. The device operates just like a pda, except
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that at each step it is allowed to write a symbol on top of the auxiliary pushdown
store. Thus, an alternate way to describe a cpda is to say that it is a nondeterministic
pda with an auxiliary write-only output stack. The finite control can neither read
nor erase in the auxiliary stack. However, a finite set of pairs of auxiliary symbols
are specified as canceling. Whenever such a pair occurs in the auxiliary stack, the
two symbols spontaneously disappear. The device accepts just like a pda accepting
by empty store. Both pushdown stores must be emptied. Formally, the definition
is as follows.

DEFINITION. A cancellation pushdown automaton (cpda) is a six-tuple M
(K, 2, F, 6, E, qo, Zo) such that" K is a finite set (of states), 2 and F are finite

sets (of input and stack symbols, respectively), q0e K (qo is the start state),
Zo F(Zoistheinitialstacksymbol),6isa(nextmove)functionfromK x (Z: U {e})
x F into finite subsets of K x F* x F*, and, finally, E (the cancellation relation) is
a subset off x F.

Intuitively, the meaning of 6 is as follows. If (p, , fl) 6(q, a, X) and M is in
state q, with X on top of the ordinary pushdown stack, and if M is scanning a on
its input tape, then one possible move is to go to state p, replace X by e, write fl on
top of the auxiliary stack and, finally, advance the input head past a.

Intuitively, (A, B)e E means the following. Any time A and B are adjacent in
the auxiliary stack with A on top of B, A and B are both spontaneously erased.
Note that E need not be symmetric. In actual computations, all cancellations will
occur at the top of the auxiliary stack.

DEFINITION. An instantaneous description (ID) of the cpda M is a triple
(WlqW2, fl, ) where q 6 K, wl, w2 * and e, fl e F*. The interpretation is that M
is in state q with input w w2 the input head is scanning the beginning of w2 fl and
e are respectively the contents of the auxiliary and ordinary pushdown stores. The
left-most symbols are considered the "top" symbols.

DEFINITION. The yield relation - between ID’s is defined as follows.
(i) (wlqw2, ABfl, ) (wlqw2, fl, (x) provided (A, B) e E

(ii) (wlqaw2, fl, Xo) (wlapw2, fl, 7) provided (p, 7, ) 6(q, a, X) and fl is
not of the form ABfl’ for (A, B) e E. - * denotes the transitive closure of -.

DEFINITION. N(M) {w e E*l(qow, e, Zo) -* (wp, , ) for some p e K}. If
L N(M) we say that M accepts L (by empty store).

THEOREM 2. A language L is a phrase-structure language if and only if it is
accepted by some cpda.

Proof. If L is accepted by some cpda, it clearly is a recursively enumerable set
and hence is a phrase-structure language. Conversely, suppose L is a phrase-
structure language. Then L is generated by a grammar G (V, E, P, S) in strong
normal form. Let Vcs, and F be as in the definition of strong normal form. Define
acpdaM (K,E, F, 6, E, qo, Zo) as follows. There are two states, i.e.,K {qo, ql}.
The stack alphabet F V U E U {, , Zo}, where ., . and Zo are new symbols.
E {(A, B)IBA e} U {(., N)}. 6isdefinedasfollows’f(qo, e, Z0)= {(ql, SZo, )}.
If A Vc:, then 6(ql,e,A --{(ql,/,)lA-- 7 is in P}. If A (_J , then
6(ql,e,A)={(ql,e,A)}. If acE, then 6(ql,a,a)={(ql,e,,.)}. Finally,
6(q, e, Zo)= {(q l, e, )}. Intuitively, m constructs a derivation from S in the
ordinary stack, omitting all erasing rules. The erasing rules are performed in the
auxiliary stack. The pair of symbols .. is used to prevent unintentional canceling
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in the auxiliary stack. The generated string is compared with the input to see if they
match. Thus L N(M). The formal details are similar to the proof that every
context-free language is accepted by empty store on some pda. This concludes the
proof of Theorem 2.

The analogy between pda’s and cpda’s is close enough so that many defini-
tions and proofs can be carried over with no real change. The analogy is not
complete, however. For example, it would be a mistake to carry over the notion of
acceptance by final state from pda’s to cpda’s without significant changes in the
definition. If state acceptance is defined in the usual way, that is, the cpda accepts
if it is in one of a designated set of accepting states at the end of the input, then the
cpda can never get any use out of the auxiliary stack, and so it accepts exactly the
context-free languages. Clearly, this is not a good notion of acceptance. If we
instead define acceptance to mean that, after scanning the input, the cpda is in
one of a designated set of accepting states and the auxiliary stack is empty, then
we get results analogous to the classical pda results. This kind of mixed mode
acceptance may seem a bit strange. However, if one is to have a notion ofacceptance
by final state, it appears that it must be this mixed mode of acceptance.

DEFINITION. The cpda M (K, Z, F, 6, E, qo, Zo) is said to accept the language
L by final states F provided L {w e E*l(qow, e, Zo) - * (wp, e, ) for some p F
and some a F*}.

THEOREM 3. For any language L, thefollowing are equivalent.
(i) There is a cpda M and a set of states F such that M accepts L by final

states F.
(ii) There is a cpda which accepts L by empty store.

Theorem 3 is proven in the same way as the corresponding result for pda’s, so
the proof will be omitted here.

The notion of determinism carries over from pda’s to cpda’s with no real
change.

DEFINITION. A cpda is called deterministic provided that
(i) for each state q and pushdown symbol Z, if 6(q, , Z) is nonempty, then

6(q, a, Z) is empty for each input symbol a;
(ii) for each state q, pushdown symbol Z and each input a (including a e),

6(q, a, Z) contains at most one element. As before, 6 denotes the next move
function.

For deterministic cpda’s, acceptance by final.states and acceptance by empty
store are not equivalent. Every language accepted by empty store on a determini-
stic cpda is also accepted by final states on some deterministic cpda. The converse
is not true, however. With either definition of acceptance, there are languages
accepted by cpda’s which are not accepted by any deterministic cpda. As the next
theorem indicates, any recursively enumerable set which is not recursive is an
example of such a language.

THEOREM 4. IlL is accepted by some deterministic cpda (either by empty store
or by final states), then L is recursive.

In order to prove Theorem 4, we will need the following lemma.
LEMMA 3. For every deterministic cpda M, there is an integer k such that for

every computation ofM, thefollowing is true. If the ordinary stack ever increases in
length by k or more symbols, without M advancing its input head, then: no additional
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input will be read the ordinary stack will grow arbitrarily large; thefinite control of
M will continually loop through a finite sequence of states; and each time M cycles
through these states, it will place the same string of symbols on top of the auxiliary
stack.

Proof. Assume M adds at most one symbol per move to the ordinary stack.
M can always be modified to make this true. Set k equal to the number of states of
M multiplied by the number of different stack symbols of M. If the ordinary stack
ever grows in length by k or more symbols without advancing its input head, then M
must have moved from some ID (uqv,/, A) to some ID of the form (uqv, , ArAb),
where A is a single stack symbol and the ordinary stack symbols A are never
altered during the intervening computation. Since both the state and the top symbol
of the ordinary stack are repeated, M is in a type of infinite loop. No more input will
be read, and the finite control will cycle through a fixed pattern of states. Every
time M goes through such a cycle, the net change in the ordinary stack will be to
add the string Ay to the top of the stack. Since the symbols placed on the auxiliary
stack depend only on the state and the top symbol of the ordinary stack, M will
place the same string of symbols on top of the auxiliary stack during each cycle.
The above proof is similar to that of related results on deterministic pda’s. A more
detailed analysis of these techniques can be found in Chapter 12 of [63.

Proof of Theorem 4. The proof, though fairly lengthy, is based on standard
techniques and so will be rather informal. First, notice the following. If the aux-
iliary stack is removed from a deterministic cpda M, the result is a well-defined
deterministic pda. Call the pda so obtained from M the pda associated with M.
If M accepts a string w by empty store (respectively, final states F), then the pda
associated with M also accepts w by empty store (respectively, final states F).

Given a determinsitic cpda, M, and a string w, we can easily decide whether or
not M accepts w by empty store. To do this, we proceed as follows. First decide if
the pda associated with M accepts w by empty store. It is well known that this is
decidable. If the associated pda does not accept w, then M does not accept w. If the
associated pda does accept w by empty store, then the unique computation of M
on w is a halting computation. So, in order to determine if M accepts w, we need
only simulate M on w.

Given a deterministic cpda M, a string w and a set F of final states, it is more
difficult to decide if M accepts w by final states F. The additional complication is
due to the fact that, after accepting a string w by final state, a pda can continue to
compute. Accepting computations need not be halting computations. The problem
is still decidable, however. The procedure is as follows. First decide if the associated
pda accepts w by final states F. If not, then M does not accept w. If the associated
pda accepts w, then we simulate M on w. Since the associated pda accepts w, we
know that M reads the entire input string w. It will suffice to show that, in this case,
we can eventually determine whether or not M accepts w.

Consider M after it has scanned the entire input string. If M eventually halts,
then we can certainly determine whether M accepts the input. So, assume M does
not halt. The ordinary stack will either remain bounded in length or else grow
arbitrarily large. If the ordinary stack is bounded, then we can detect this fact.
For M will eventually start to loop through a finite sequence of state-ordinary
stack configuration. By Lemma 3, we can also tell if the ordinary stack grows
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arbitrarily large. In either case, the finite control is cycling through a finite sequence
of states. Furthermore, a fixed pattern of stack symbols is being placed on the
auxiliary stack during each such cycle. It remains to decide if the auxiliary stack is
empty at one of the configurations in which M is a final state.

At this point, the portion of the ordinary stack that M can access is cycling
through a finite number of configurations. So, the ordinary stack is providing M
with only a finite amount of information. So, M is very much like a pda with the
auxiliary stack corresponding to the pda stack. Although the finite control does
not read or erase in the auxiliary stack, all changes in the auxiliary stack do occur
at the top of the stack and could be simulated by a deterministic pda. So, just as in
Lemma 3, we can calculate an integer k’ such that if the auxiliary stack ever grows
by more than k’ symbols, then the stack will grow arbitrarily large, and it will
never be empty.

To determine if the auxiliary stack is empty when M enters a final state,
proceed as follows. If the auxiliary stack increases its length by more than k’
symbols, then M will never empty the auxiliary stack. So, in this case, we know that
M does not accept the input w. If the auxiliary stack does not increase its length by
more than k’ symbols, then M is cycling through a finite pattern of state-auxiliary
stack configurations. To determine if M accepts w, we need only check this finite
number of state-auxiliary stack configurations. So, no matter how the computation
proceeds, we can always determine whether or not M accepts w.

3. Algebraic form. Implicit in the proof of Theorem 2 is the following
algebraic characterization of phrase-structure languages.

THEOREM 5. Every phrase-structure language is expressible in the form
h(h-I(D) (-] L), where L is a context-free language, D a Dyck set and h a homomor-
phism.

This result is similar, though not identical, to various other results which
express recursively enumerable sets in terms of context-free languages and homo-
morphisms (Ill, 2], I4]). A proof of Theorem 5 based on Theorem 3.1 of 4], for
example, is not too difficult. We will instead give a proof based on Theorems and
2.

Proof. Given a psg G, put it in strong normal form. Construct a cpda, M, as in
the proof of Theorem 2. Thus N(M) L(G). Let D be the set of all strings, over the
stack alphabet, which would cancel if placed in the auxiliary stack. D is a Dyck set
because G is in strong normal form. Let L be all strings of the form woA w A2w2
A,w, for which the following is true: wowlw2...w, is a string over the input
alphabet of M. A1A2 A are stack symbols of M. If M were given the input
wowlw2...w,, it would behave as follows. M would place no symbols in the
auxiliary stack until it had read all of Wo. Then M would place A in the auxiliary
stack. M would place nothing more in the auxiliary stack until it had read W x.
Then M would place A 2 in the auxiliary stack, and so forth. So A 1, A 2, A, are
exactly the symbols M puts into the auxiliary stack. Furthermore, after processing
this input, the ordinary stack ofM is empty. The auxiliary stack may or may not be
empty, depending on whether or not AIA2 A, cancels or not. Let h be the
homomorphism which is the identity map on input symbols and which sends all
stack symbols onto the empty word. The string w N(M) if and only if there is some
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string woAlwlA2w2 Anwn L such that w wowlw2 W h(WoAlWlA2W
A,w) and AIA. A D. Thus L(G)= N(M)= h(h-I(D) [") L). All that

remains is to show that L is a context-free language. But L is accepted by empty
store by a pda, and so it is a context-free language. A pda to accept L is obtained
from M by removing the auxiliary stack from M and modifying the finite control
of M as follows. Instead of placing a symbol, A i, in the auxiliary stack, it checks to
see if A is the next input symbol. This completes the proof.
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APPROXIMATE MODELS FOR PROCESSOR UTILIZATION
IN MULTIPROGRAMMED COMPUTER SYSTEMS*

D. P. GAVER+ AND G. S. SHEDLER

Abstract. This paper presents results of an approximation study of cyclic queueing phenomena
that occur in multiprogrammed computer systems. Based on Wald’s identity and using ideas of
diffusion, the objective is to develop convenient and nearly explicit formulas relating processor
utilization in such systems to simple program parameters and the level of multiprogramming. Some
numerical results to indicate the quality of the proposed approximation are given.

Key words, multiprogramming, queueing, diffusion approximations.

1. Introduction. In a previous paper I2], we have initiated an approximation
study of cyclic queueing phenomena that occur in multiprogrammed computer
systems. Particular attention was focused upon processor utilization estimation,
as it depends upon the statistical properties of programs. The basis for the ap-
proximation was the observation that under "heavy traffic" conditions, it is
plausible to approximate the flow of programs in a multiprogrammed computer
system by means of a diffusion or Wiener process (cf. [1, pp. 332-3453, [6, pp. 101-
109]) with appropriate infinitesimal parameters and boundary conditions. The
results were seen to be usefully accurate, as judged numerically, and to be of an
extremely simple analytical form. They can thus be put to use for at least pre-
liminary design purposes, with follow-up refined analysis or simulation furnishing
further corrections if needed.

One deficiency of the results of [2] is that they tend to misestimate CPU
utilization (i.e., the long-run fraction of time that the CPU is busy) when CPU
service or processing times come from distributions of greater positive skewness
than the exponential. In the present paper, we wish to alter our approximation
so as to render it more accurate in the case of such hyperexponential-appearing
CPU service times. This change is important, since currently available data
indicates that greater-than-exponential skewness is common.

2. The model. We suppose, as we did in [2], that J programs are in the
central processing unit (CPU)-data transfer unit (DTU) cycle. Each program is
(i) in the process of awaiting, or receiving, service at the CPU, at the termination
of which (ii) it repairs to the DTU, again queueing as if at a single server. Having
received the requisite information at the DTU stage, it then returns to the CPU
stage. This process continues indefinitely. When programs are completed and
thus removed from the system, new programs are immediately reintroduced. A
diagram indicating the situation appears in Fig. 1.

* Received by the editors October 25, 1972.
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Programs

CPU Stage DTU Stage

FIG.

The assumptions made concerning program behavior are the following.
(a) The sequence of CPU service or processing times is one of independent

identically distributed random variables (i.i.d.r.v.) {Ci, 1, 2...}.
(b) The sequence of DTU service or auxiliary memory access and data

transfer times is also one of i.i.d.r.v., {Di, 1, 2,...).
(c) CPU and DTU processing times are mutually independent. Furthermore,

we must assume the following.
(d) The Laplace transform, E[e-sC], of a generic CPU service time converges

for -So < s, for some So > 0. This latter is truly a mathematical restriction, but
is probably not a serious one; all gamma densities and convex combinations of
exponentials (hyperexponentials) are covered, for example.

3. Analysis of the model. In summary, our present approximate analysis of
the multiprogramming model proceeds by first attempting to find an appropriate
set of parameters # and a in the diffusion equation

(3.1) cF/ct -la(F/x) + (a2/2)(2F/cx2).

Here F(x;t) is the approximate distribution of the number of jobs in the CPU
stage at time t. A method for obtaining parameters # and o"2 which was based on
asymptotic renewal theory appears in 2] and is sketched in Appendix B. Then
we truncate the stationary distribution to allow for the boundary at x J, and
compare several methods for determining a crucial constant (denoted by B in
I2]) that allows us to deal with the boundary at x 0: the latter is important, for
it is directly related to CPU utilization, which it is our intention to estimate.

Consider the waiting time, W,, of the nth customer to arrive at an ordinary
single-server, one in which there is no restriction placed upon the number waiting.
This model would approximate the behavior of a cyclic queue or multiprogram-
ming system in which the number of programs J is unlimited. We shall assume, as
is realistic, that the CPU service rate outstrips that of the DTU, i.e., E[C] < E[D].
Now Feller [1, pp. 194-198] shows that W, has the same distribution as the max-
imum of the partial sums of the unrestricted random walk

(3.2)

where

(3.3)

max E0, S1, $2, Sn]

Sn--- X1 + X2 + + X
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and

(3.4) X Ck- D.
To study M,, invoke Wald’s identity (see Feller [1, p. 603] or Kingman [4])"

E{eSSN/[O(s)lN} 1,

N being the random time at which a boundary is reached, and

(3.6) O(s) E[eSx] E[eC]E[e-1.
Now place a boundary at x > 0, and another at -b, b > 0. Then since by

definition of N, P{-b <_ SN < x} O,

(3.7) E{eSS"/Ou[Su > x}P{Su > x} + E{eSS"/OulS < -b}P{Su < -b} 1

If E[C] < E[D], it may be shown that the equation

(3.8) O(s)

has a solution at s 0, and one at _s > 0. Put s _s, let b --, , and observe that
then

(3.9) P{Su > x} 1/E{e-Sls > x}.

This is the probability that the unrestricted random walk S ever exceeds the
boundary at x, and is, by (3.2), equal to the probability that the waiting time
exceeds x. We write this as

P{W > x} e--’/E{e-(sz-x)lSu > x}

where SN x > 0 represents the excess; if we neglect this excess we obtain the
estimate P{W > x} <= e--x if x is large the excess is comparatively small, which
suggests the approximation P{W > x} K e -s-, where K is a constant that must
be determined.

By the result of Haji and Newell [3], the number, Q, of customers in the
queue is the number that arrive during the waiting time of an arbitrary customer
reference is to the stationary distributions of both W and Q. Conditionally,

(3.11) P{Q >- nlW- x} Gn*(x),

where G is the distribution function of D, and * represents Stieltjes convolution.
Then, by (3.11) above,

(3.12) P{Q >_ n} - K Gn*(x) e--Xs_ dx K[((_s)

where ((s) is the Laplace-Stieltjes transform of G, evaluated at _s. This effectively
states that, at least under heavy traffic conditions (p (E[Cl/E[D]) barely < 1),
the stationary distribution of the number in the system is exponential, but with
parameter somewhat different from that of the diffusion approximation"

(3.13a) Diffusion" P{Q >__ x} K’ e(2u/r2)x,
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where t- 1/E[D] 1/E[C] and a2 var [D]/(E[D])3 + var [C3/(E[C])

(3.13b) Wald" P{Q >= x} K e[lnd’(s-)lx Kid(6)]x.

see Gaver and Shedler [2]. For a new approximation, we then merely replace
the ratio 2/t/a 2 by In ((_s) and fit constants as was done in [2]. The relation be-
tween the parameters in the diffusion approximation expressed by (3.13a) and
that in the approximation resulting from Wald’s identity (3.13b) is considered in
Appendix A.

Given the values of/ and a2, the stationary diffusion approximation for the
distribution F of Q satisfies

(3.14) 0 -dF/dx + (az/21)(d2F/dx2),
in which we now propose to replace 2//o"2 by In (2,(_s). We also must determine
the constant B in the solution to (3.14)"

(3.15) F(x J) (1 B e-’)/(1 B e-),
where the latter expression satisfies the boundary condition at x J:F(J; J) 1.
Here we have introduced the notation F(x;J) to emphasize the dependence upon
the parameter J. The constant a > 0 can be determined either by an argument
based on asymptotic normality in conflicting renewal processes (see [2]), or as we
have argued, using Wald-Haji-Newell results.

4. Fitting the constant B: approximations for CPU utilization. We suggest
and investigate two ways in which the constant B in (3.15) can readily be
determined.

Method 1. If J oe, then it is well known (see Takacs [7, p. 142]) that server
(CPU) utilization is

(4.1) 1 F(0+ ;)-- p E[C]/E[D].

Hence it follows that to achieve this approximately for large J, we should put
B B1 p, from which

(4.2) F(x; J) (1 p e-X)/(1 p e-S), 0 <= x <_ J ;a > O.

This approach was taken in [2] with good results for exponential CPU service.
Method 2. With probability F(J- 1 ;J), there is at least one program

in residence at the DTU. Hence the long-run input to the CPU should be
1. F(J l; J), assuming that E[D] 1. Now the long-run output rate from the
CPU must equal the input rate, and the output rate approximates [1 F(0+ J)]
(1/E[C]). By this conservation principle, then,

[1 B e -’(s- 1)]/(1 B e -s) (B/E[C])[(1 e-S)/(1 B e-S)],

from which we find that B2 p/(1 + p e -’(s- 1) e-S). Of course, B2 --. B1 as

We shall shortly provide some numerical comparisons that illustrate the
behavior of the two methods when they are applied to actual measurement data.



MODELS FOR PROCESSOR UTILIZATION 187

5. Special cases. We now describe the manner in which our approximations
may be applied when certain specific distributions are in force.

Case 1. CPU service exponential, E[C] 2-1; DTU service Erlang- k,
E[D3-- 1.

In this case, equation (3.8) has the form

(5.1) #(s)--[2/(2- s)l[1/(1 + s/k)lk= 1.

It must be solved numerically for _s, a task that can be carried out by Newton-
Raphson iteration.

Case 2. CPU services exponential; DTU service constant, E[D] 1.
For this limiting case of (5.1), let k oo to obtain the equation

(S.2) [2/(2 s)] e 1.

Case 3. CPU services Erlang- k, EC]- Z-; DTU service constant,
E[D3- 1.

Here we must solve

(5.3) [1/(1 s/2k)] e 1.

Case 4. CPU services hyperexponential; DTU services constant, E[D] 1.
Representation of CPU services by means of a convex combination of ex-

ponentials (the hyperexponential distribution) suggests itself according to actual
program trace data. This model leads to the equation

2t + (1 -p) e- 1,(5.4) P2 s

where
ec] _= 2- p(2)- + ( p)(2:)-,

and p takes on an appropriate value between zero and unity. In practice it is con-
venient (if not statistically efficient) to fit the parameters of Cases 3 and 4 by the
matching of low moments from model and data. Supposing that (2.)-1 < EC]
< (21)- 1, it can be shown that, given E[C and var [C1 such that (var C1)I/2/E[C1
> 1, along with (22)-1, p and 21 are uniquely determined.

Unfortunately, all of the above models require the numerical solution of a
transcendental equation in order to generate actual numerical estimates of CPU
utilization. This disadvantage is not possessed by the diffusion approximation of
[2].

It is of interest that our procedure gives results in complete accord with an
exact analysis in one particular case.

Case 5. CPU and DTU services exponential.
This case can easily be analyzed by simple birth-and-death process methods,

for which see [2]. Our procedure demands that we first solve

(5.5) [Z/(R- s)][1 + s] -1- 1,

which in this case has the explicit solution _s 2 1 consequently ((_s) 1/2 p.
Then the approximation yields

F(0 + J) (1 B,)/(1 B,pJ), 1,2.
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Here B refers to the constant B as determined by Method (i 1 or 2). But for
the present model we have

(5.6) B2 p/(1 + pipJ-’] pJ)= p B,,
and use of Bi p yields

(5.7) F(O + J) ( p)/( p + ’),
so our approximation is in this case equal to the birth-and-death result. For our
other cases, exact equality will not hold.

6. Numerical results. We now present numerical results to indicate the
quality of the proposed approximation. Our examples are in the context of a
single processor system with two-level memory, multiprogrammed and operated
in a demand paging environment. A discussion of cyclic queueing phenomena in
such systems is given in Lewis and Shedler [53. Accordingly, we interpret the CPU
service times in our model as execution intervals, i.e., times between page ex-
ceptions as programs execute in (constrained) memory of given capacity. We
concentrate on Case 4 of 5 (CPU services hyperexponential, DTU services
constant) on the basis of our experience that execution intervals often fit well to a
hyperexponential model. The assumption of constant DTU service times arises
from the consideration of average access time along with the time to transfer a
page of information.

In all cases that we shall consider, values for p, 21 and 22 in the hyper-
exponential were obtained by matching first and second moments of the empirical
distribution obtained from actual program data.

Tables and 2 contain numerical results for CPU utilization obtained by
the approximation technique (for both methods of fitting the constant B) along
with results of exact analysis based on semi-Markov (S-M) methods as given
in [5].

Finally, we present some results of CPU utilization obtained by trace-
driven simulation of the cyclic queueing system. By this we mean that CPU
service times in the model were taken to be the actual sequence of execution

TAn
CPU utilization comparisons

J S-M Approx. B Approx. B S-M Approx. B Approx. B

2 0.3903 0.1909 0.3972 2 0.2216 0.1455 0.2216
3 0.4054 0.2486 0.4274 3 0.2286 0.1789 0.2313
4 0.4178 0.2924 0.4440 4 0.2333 0.2003 0.2361
5 0.4280 0.3264 0.4545 5 0.2366 0.2144 0.2388
6 0.4367 0.3534 0.4616 6 0.2388 0.2238 0.2404
7 0.4439 0.3751 0.4668 7 0.2403 0.2301 0.24L5
8 0.4501 0.3927 0.4708 8 0.2413 0.2344 0.2422
9 0.4553 0.4072 0.4736 9 0.2420 0.2373 0.2426
10 0.4598 0.4193 0.4759 l0 0.2425 0.2393 0.2429

E[C] 4871,var[C] 0.26492 109,(22) 1929,
E[D] 10,000

E[C] 4871, var[C] 0.26492 109,(22) 1929,
EEO] 20,000
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TABLE 2

CPU utilization comparisons

S-M Approx. B1 Approx. B J S-M Approx. B Approx. B

2 0.4076 0.0770 0.4249 2 0.5316 0.2148 0.5993
3 0.4281 0.1094 0.4579 3 0.5548 0.2884 0.6667
4 0.4449 0.1385 0.4764 4 0.5752 0.3481 0.7064
5 0.4587 0.1649 0.4882 5 0.5935 0.3974 0.7326
6 0.4702 0.1887 0.4964 6 0.6098 0.4388 0.7511
7 0.4798 0.2105 0.5024 7 0.6245 0.4741 0.7650
8 0.4879 0.2304 0.5070 8 0.6379 0.5045 0.7757
9 0.4948 0.2485 0.5106 9 0.6500 0.5309 0.7842
10 0.5006 0.2654 0.5136 10 0.6611 0.5542 0.7911

E[C] 10,735, var[C] 0.12313 101,(22) 2953,
E[D] 20,000

E[C] 17,026, var[C] 0.39780 101,(22) 3682,
E[D] 20,000

intervals derived from a program trace, J copies of this sequence being multi-
programmed. In Table 3, these trace-driven results are displayed, along with
values of CPU utilization obtained by the approximation technique.

7. Summary and conclusions. This paper presents the results ofapproximating
processor utilization in multiprogrammed computer systems using ideas of
diffusion. In particular, the objective is to develop convenient and nearly explicit
formulas relating CPU utilization to simple program parameters and to the
level of multiprogramming.

Numerical comparisons indicate that a reasonably effective approximation
has been obtained when the constant B2 is utilized. Examples show that for the
actual program traces studied our present approximation is superior to that of
[2], which assumed exponentially distributed CPU service times. Data from our
trace material is far more skewed (long-tailed) than that yielded by the ex-
ponential. Research continues in an attempt to improve the approximate pro-
cedures obtained to date. A promising approach is the iteration of our approx-
imate solutions. Of course, an eventual goal is that of obtaining simple but
adequate approximations to properties of somewhat more complex and truly
realistic networks of servers.

Appendix A. The relation between the parameter in the diffusion approx-
imation of [2], as expressed in (3.13a), and that in the approximation resulting
from Wald’s identity, (3.13b), will now be considered. Application of Wald’s
identity requires that we find the positive root, s_, of (3.8). Let us expand (s) by a
Taylor series:

(A.1) (s) + six + (s2/2)a2 + R(s)

where the remainder is O($2), provided that required moments exist. Here

(A.2)
/x E[X] E[C- D] < 0
2a var IX] var [C] + var [D].
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At _s we have from (A.1) and (3.13b), after dispensing with the root at s 0,

(A.3) /x + -s(a2/2) + r(_s) 0,

or

(A.4) 2#,/_Sax2 + + (2/ax2) [(1/_s)r(_s)] 0.

Therefore, if we consider a sequence of queueing situations in which _s -+ 0 and
ax2 does not approach zero, the remainder term approaches zero, since r(s) o(s).
We see then that as _s -+ 0,

(A.S) (2#x/)’aZx) 1,
or
(A.6) s_ 2px/a2x

In the event that _s --, 0, our Wald approximation and the approximation of
[2] coincide, as will now be shown. For _s approaching zero, as will be true in
heavy traffic,

(A.7) -In ((_s)= s_E[DI + o(s_).

Consequently the parameter in the Wald-Haji-Newell approximation becomes,
in heavy traffic,

2a var [DI + var

(A.S) 2
/EC /ED

vat [DI/(E[D])2E[C] + var

/E[D] /E[CI
2 =2--

var [DI/(E[D]) + var [C]/(E[C]) a2"

For the specific models introduced earlier in 5, it is clearly sufficient to
allow the mean CPU service time to approach unity from below in order to force
_s to zero. Consider, for example, Case 3"if 1/2 E[C] is allowed to increase, it
becomes apparent that for every fixed s, O(s), the left-hand side of (5.3), increases,
and _s moves continuously towards the origin’when 1/2 1, there is a (double)
root at s 0. A similar effect occurs when, say, 21 0 in (5.4), a maneuver that
allows E[C] to approach unity. Again, O(s) is increased for every s, and in the limit
there is a double root at s 0. Recall that the region of convergence of the trans-
form O(s) is s < min (21,22) , and since > _s, a decrease in either 21 or 22
eventually sends _s to zero. Examination of the denominator of (3.10) suggests also
that if _s is near zero, the expectation is near unity, thus further justifying the use
of our approximation.

Appendix B. Let Nc(t) denote the number of programs present at the CPU
at time t" this includes those queued in addition to the program currently in
service. Then if Nc(O) O,

(B.1) Nc(t A(t)- D(t),
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where A(t) represents the number of arrivals at the CPU in (0, t), and D(t) is the
number of CPU departures in (0, t). If we neglect boundary effects at 0 and J, A(t)
and D(t) are independent renewal processes, so as becomes large, A(t) and D(t)
are approximately normally distributed with mean t/E[D] and t/E[C], and
variances t{var [D]/(E[D])3} and t{var [C]/(E[C])3}, respectively. It follows that
Nc(t is approximately normally distributed with mean/t [1/E[D] 1/E[C]]t
and variance r2t {var [D]/(E[D])3 + var [C]/(E[C])3}t. We now approximate
by replacing the difference of renewal processes by a diffusion (Wiener process)
with drift p and infinitesimal variance a. Thus, F(x, t), the distribution of Nc(t),
satisfies the diffusion equation

(B.2) F/t?t -#(t?F/t?x) + (a2/2)(t?2F/t?x),

again approximately. A reflecting boundary condition at x 0 must be imposed,
for Nc(t) >_ O, and another such boundary condition at x =iJ constrains Nc(t
to be =< J. We require the solution to (B.2), subject to an initial distribution, e.g.,

1, x__>Xo>0
(B.3) F(x" O)

O, x < Xo,

and boundary conditions

(B.4) F(0+ t)>_ 0, F(J, t)- 1.

The stationary or long-run distribution associated with our problem is
F(x) limt_F(x;t and satisfies (az/2)(d2F/dx2) -#(dF/dx)= 0 for x > 0.
Routine integrations lead to the solution

(B.5) F(x) All B e(Zu/*2)x3.
Invocation of the upper boundary condition provides that

(B.6) All B e(2u/az)J].
According to (B.5) and (B.6), we have

(B.7) F(x) [1 B e(2U/2)x-l/[1 B e(2U/2)J].
It remains to determine the constant B; see 4 above.
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FINITE STATE REPRESENTATIONS OF
DISCRETE OPTIMIZATION PROBLEMS*

TOSHIHIDE IBARAKI?

Abstract. This paper is concerned with the representation of a discrete optimization problem
given in the form of a ddp (discrete decision process) by a G-sdp (G-sequential decision process).
A G-sdp is a finite state model of discrete optimization problem, consisting of a finite number of states
and a rule specifying the transition from one state to another corresponding to each decision applied
to it. A cost function, taken from a given family of functions G, is associated with each transition.
A necessary and sufficient condition for a given ddp to be represented by a G-sdp, which is valid for
most important G’s, is obtained:it turns out that various representation theorems obtained in the
earlier paper [3] are special cases of this theorem. Furthermore, a case in which the existence of the
unique minimal representation is guaranteed to exist receives special attention, and some sufficient
conditions are discussed.

Key words. Discrete optimization, G-sequential decision process, representation theorem, finite

automata, unique minimal representation.

1. Introduction. In papers by Karp and Held [7], and by Ibaraki [3], [4], the
representation of a discrete optimization problem given in the form of a ddp
(discrete decision process; the formal definition will be given in 2) by a finite
state model, i.e., an sdp (sequential decision process), was considered. An sdp
consists of a finite number of states and a rule specifying the transition from one
state to another corresponding to each decision applied to it. A cost function is
associated with each transition. An optimal policy of an sdp is a sequence of
decisions which transforms the initial state into one of the designated final states
with the minimum cost. (For the formal definition see 2.)

An sdp is called a monotone sdp (msdp) if its cost functions satisfy a certain
monotonicity property. The msdp has received special attention [7] in conjunction
with the theory of dynamic programming. Various subclasses of the class of
msdp’s with additional restrictions on cost functions were introduced by Ibaraki
[3] from the viewpoint of algorithm efficiency for obtaining optimal policies. These
subclasses have a common feature in that the set of optimal policies is always
regular (in the sense of the automata theory).

In view of this line of development of the theory, the following problem
appears quite interesting: given a set of functions G eligible for cost functions,
what is a necessary and sufficient condition for a discrete optimization problem to
be represented by a G-sdp (an sdp with cost functions taken from G)? In this
paper, we will establish a theorem for this problem. It is valid for many meaningful
G’s. In particular, the representation theorems for sdp, msdp and some subclasses
of msdp obtained in [3] and [4] are derived as special cases.

Furthermore, it will be shown that there is a case in which the existence of
the unique minimal representation (i.e., with the fewest states) is guaranteed.
Some sufficient conditions for the property to hold will also be discussed.

* Received by the editors July 5, 1972.

" Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University,
Kyoto, Japan.
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2. Definitions. We assume that a discrete optimization problem under con-
sideration is written in the form of a ddp defined below.

DEFINITION 2.1. A discrete decision process (ddp) Y is a system (E, S, f), where
E is a finite nonempty set of primitive decisions;
]2* is the set of all policies, where a policy is a sequence of finite primitive

decisions; e denotes the null policy (i.e., the policy consisting of 0
primitive decisions); xy for x, y E* denotes the policy obtained by
concatenating x and y;

S c E* is a set of feasible policies;
f:S A, where A c E and E is the set of real numbers.

A policy x e E* is optimal if x s S A (Vy e S)(f(x) <_ f(y)) holds. In the rest of
this paper, r always stands for a ddp (E, S, f) even if it is not explicitly stated.

DEFINITION 2.2. A finite automaton (fa) M is a system (Q, Z, qo, 2, QF), where
E is the same as above and

Q is a finite nonempty set of states;
q0 Q is an initial state;
2:Q x E ---, Q is a state transition function;
QF Q is a set of final states.

2 can be extended to Q x E* Q inductively by

(Vq Q)(Vx *)(Va Z)(2(q, e) q A 2(q, xa) 2(2(q, x), a)).

.(x) 2(q0, x) is used for convenience. F(M). {xl.(x) e QF} is the set of policies
accepted by M. B Y:* is said to be regular if there exists an fa M such that
F(M) B.

DEFINITION 2.3. A sequential decision process (sdp) FI is a system (M, h, o),
where

M is anfa;
h is A Q E A, the cost function of H;
o A is an initial cost value of state qo.

h can be extended to A x Q x E* A by

(V A)(Vq e Q)(Vx e E*)(Va e E)(h(, q, ) A h(, q, xa)

h(h(, q, x), 2(q, x), a)).

The notation h(x) =_ h(o, qo, x) is used forconvenience. The set offeasible policies
of H is given by F(H)= F(M). The policy x eye* is optimal in H if x e F(H)
/ (Vy F(H))(h(x) <__ (y)) holds.

Many interesting examples of ddp’s and sdp’s in practical applications are
found in [7].

DEFINITION 2.4. Let G be a family of functions" A A. An sdp H (M, h, o)
is a G-sdp if h’A A defined by

(V e A)(hq,() h(, q, a))

belongs to G for all q Q and a E. Throughout this paper, it is assumed that G
forms a monoid under composition (i.e., the identity function g, belongs to G and
g,h 6 G implies gh G).
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Example 2.5. Let A E, where E is the set of real numbers.
(i) Go {g :E --* E}. Then Go-sdp is the same as the sdp of Definition 2.3.

The sdp was discussed in 7] and [3].
(ii) Gm= {g e GoI(V, e E)( =< g() =< g(’))}. Then Gm-sdp is the msdp

(monotone sdp) discussed in [7] and [3].
(iii) Gs {g GoI(V, " E)( < " g() < g())}. Then Gs-sdp is the smsdp

(strictly monotone sdp) discussed in [3].
(iv) Gp {g GmI(V E)(g()>= )}. Then Gp-sdp is the pmsdp (positively

monotone sdp) discussed in 3].
(V) G {g e Gol(:lk E)(V e E)(g() + k)}. Then G,-sdp is the ap

(additive process) discussed in [7] and [3].
These models will be carried along throughout this paper, and it will be shown
that the representation theorem obtained in this paper is valid for all these models
except for Gp.

Example 2.6. Let A Z, where Z is the set of integers.
(i) Gr {g:Z---, ZI g is a recursive function on Z}. Then Gr-sdp is the

tr-sdp (totally recursive sdp).
(ii) Grin {q GI(V, Z)( <= g() g(’))}. Then Grm-sdp is the tr-

msdp (totally recursive msdp).
Various decision problems (in the sense of the theory of computation) of these
models were extensively discussed in [4. However, it appears difficult to deal
with these models in the framework of the theory developed in this paper.

Now we present the precise meaning of the representation.
DEFINITION 2.7. Let Y (E, S, f) be a ddp and let FI (M, h, o) be a G-sdp.

Then H strongly represents2 (s-represents) Y if

F(H) S A (Vx e S)(h(x) f(x))

holds. H is a minimal s-representation of Y if H s-represents r, and there exists
no G-sdp which s-represents Y and has fewer states than H.

The rest of this paper will be devoted to the derivation of a representation
theorem which is a necessary and sufficient condition for a ddp to be s-represented
by a G-sdp. For that, a few more definitions are necessary.

DEFINITION 2.8. Let R, T be equivalence relations on E*. T refines R if
(Vx, yeE*)(xTy =,, xRy). This is denoted T =< R. Let B c Z;*. R refines B if
(Vx, y E*)(xRy (x B , y B)). B/R stands for the set of equivalence classes
of B under R. IB/RI denotes the number of equivalence classes in B/R. Obviously,
T <= R implies IE*/TI >= IE*/RI. Let R be a binary relation (not necessarily an
equivalence relation). R is right invariant if (Vx, y E*)(xRy (Vz E*)(xzRyz))
holds. A(B) denotes the set of right invariant equivalence relations which refine
B c E*. Av(B) is the set of all R e A(B) with IZ*/RI < oe.

Remark 2.9. Define Rn for B c Z* by

(Vx, y Z*)(xRny ... (Vz e Z *)(xz e B .. yz B)).

For the definition, see [1] and [4].
The weak representation was defined in [3], but it will not be discussed in this paper.
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In other words, (Vx, y e Z*)(xRBy (x\B y\B)), where x\B {zlxz e B}.
As proved in [8], RB e A(B) holds, and furthermore any Te A(B) satisfies T __< Rs.
Thus AF(B) is nonempty if and only if Rs e AF(B) It is also known that RB e AF(B)
holds if and only if B is regular [8].

DEFINITION 2.10. Let AF(B) be nonempty and let T6 AF(B). Then fa M
(Q, Z, qo, 2, QF) defined by

Q {[Bi]lB E*/T}
2([x],a)= [xa] forxeZ*,ae2

qo [e]

is the standard construction of T, where x] denotes Bi] such that x B A Bi Z*/T.
By definition, IQI JZ*/T] follows.

Remark 2.11. It is known 8] that the standard construction M is well-
defined for any T Av(B) and that F(M) B holds. Conversely, define T for an

ram (Q,Y,qo,2, Qv) by (Vx, yE*)(xTyc(x)= (y)), then TAv(F(M))
follows and M is the standard construction of T.

Remark 2.12. If a ddp i" (Z, S, f) is s-represented by a G-sdp FI (M, h, o),
then S is regular since S F(M) holds by definition. However, the regularity of
S does not always guarantee the existence of a G-sdp s-representing l" since cost
functions hq, of FI must be taken from G.

3. Representation theorem. In this section, we first introduce a binary relation
defined on E* relative to given "l" and G. This relation plays an important role

in the representation theorem (Theorem 3.17).
DEFINITION 3.1. For a ddp Y (X, S, f), define Hr by

Hr {y’E* Ai(Vx S)(7(x) f(x))},
i.e., 7 e Hr is an extension off’S A.

DEFINmON 3.2. For a family of functions" A ---, A, G and a ddp Y (Z, S, f),
define F(x, y) c Hr as follows for x, y e E* satisfying xRsy, where Rs was defined
in Remark 2.9.

rr(X, y) {7 e Hrl(Vw e X*)(Va e X)(3gw, e G)(gw,(y(xw))

?(xwa) A g,(,(yw))= ?(ywa))}.
The binary relation c is then defined by

(Vx, y e E*)(xOy ., xRsy A rc(x, y) 4: ).

The subscript l" and the superscript G of F and will be usually omitted through-
out this paper, since there will be no confusion.

Remark 3.3. xy implies that xRsy holds, and, moreover, it is possible to
assign cost values 7(z) to all z e E* so that

(i) 7(z) f(z) may hold for all z e S, and
(ii) for each w e E* and a e E, cost values y(xw), y(yw) and 7(xwa), y(ywa) can

be linked by a function gw, taken from G.
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The symbol F(x, y) denotes the set of all assignments of cost values satisfying these
conditions. By definition, is symmetric, i.e., xy yx, but in general neither
reflexive nor transitive. The order of x and y in F(x, y) is also immaterial since
F(x, y)= F(y, x) always holds. For most G, the reflexivity of can be easily
proved. For example, is reflexive for Go, G,,, G, and Ga regardless of the ddp
under consideration. However, rp may not be reflexive, depending upon the
under consideration. Finally it is noted that is right invariant, as proved next.
First, Rs is right invariant (see Remark 2.9). Next, it holds that 7e F(x,y)

(Vz e 2;*)(7 F(xz, yz)) by definition, implying that F(x, y) - (Vz Z*)
(F(xz, yz) ).

Remark 3.4. Since G is assumed to be a monoid, a slightly simplified defini-
tion of is also possible:

(Vx, y e E*)(xy :, xRsy A F’(x, y) 4= )

F’(x, y) -= {7 e Hrl(Vw e x\ U)(Vu e xw\ U)(:igw e G)

(gw,((xw)) (xwu) / gw,((yw)) (ywu))},
where U is given by

S U {x, y} if neither of x and y is a prefix of the other,

U= S U x, xv, xv2,...} ify=xv forv

S U {y, yv, yv2, ...} if x yv for v 2;*.

(The simplification consists in that 7(x) is essential only for x e U in this
definition.)

Proof. First we prove that F(x, y) - F’(x, y) . For 7 e F(x, y), de-
fine gwu for we x\U and u a a2 akexw\U by

gwu gwk- lakgw-2-1 gwol

where wi waxaz’.’ai for 1, 2, ..., k and Wo w, and gw,a G is the one
used in the definition of F(x, y). Then gwu e G since gw,, e G by definition and G
is a monoid. In case u e, let gw, gi (the identity function)e G. In any case, it
is straightforward to prove that g,(7(xw)) 7(xwu)/ gw,(7(yw)) 7(ywu) holds.
This proves F’(x, y) . To prove that F’(x, y) F(x, y)- , first note
that xRsy = xRvy holds since

x\v x\s {} y\s {} y\v

ifU=SU {x,y},and
\v \s u {, , ...} y\s u { ,- ...} y\u

otherwise. Now define g G for w Z* and a e E by

gI ifxwa U

gwa g,lu if xwae U, where wa ulu2 and Ul is the longest
proper prefix of wa such that XUl U and
is the one used in the definition of F’(x, y).

x is a prefix of y if there exists v e Z* such that y xv. x is a proper prefix of y if v e.
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Then 7, defined for 7’ F’(x, y) by

7’(u), where u is the longest prefix of z satisfying u U

7(z) if there exists such u,

’(e), otherwise,

belongs to F(x, y), since for any w E* and a E,

gwa(y(xw)) gw,(y’(xu)) g,,,(y’(xu,)) 7t(XUlH2) 7(xwa)

if xwa U, and

gw,,(7(xw)) g,(7’(XUl))= g,(7’(xu)) 7’(XUl)= 7(xwa)

if xwa U, where U is the longest proper prefix of wa such that xu U. Similarly
it is possible to show that gw,,(7(yw)) 7(ywa) holds. Thus F’(x, y) # 5 => F(x, y)
# . Q.E.D.

Remark 3.5. If G is a group (i.e., g- exists for all g G), the definition of
is further simplified"

(Vx, y E*)(xy .e xRsY A F"(x, y) # )

F"(x, y) {7 e Hr (Vw e x\ U)(:tg e G)(gw(7(x)) 7(xw) A g(7(Y)) 7(yw))},

where U was defined in Remark 3.4.
Proof It is trivial to prove that xRsy A F’(x, y) # if5 xRsy A F"(x, y)

holds. To prove the converse, assume that xRsy A F"(x, y) # holds. Then for

7 e F"(x, y) and w x\ U, u xw\ U, there exist g, g, e G (where v stands for wu)
such that

g,(7(x)) 7(xw) A g(7(Y)) 7(yw),

g(7(x)) 7(xwu) A g(7(Y))= 7(ywu).

Define g, by g, gg . Then g, e G, since G is a group and

g,(7(xw)) g,g (7(xw)) griT(x)) 7(xwu),

g,(7(yw)) gg, (7(yw))= griT(Y))= 7(ywu).

Thus 7 e F’(x, y), and hence we have xRsy A F "(x, y) 4: = xRsy A F’(x, y) #
Q.E.D.

Example 3.6. Let G Go (see Example 2.5(i)). Go is a monoid but not a
group. Now define a binary relation Rr on Z* for a ddp Y (Z, S, f) by

(Vx, y Z*)(xRry > xRsy A (Vw x\S)(f(xw) f(yw))).

Rr is an equivalence relation and right invariant [3]. For x, y Z* with xRsy,
[,o (abbreviated by Fo) is given as follows.

Fo(x, Y) {7 Hri(’V’w Z*)(Va Z)(3gw Go)

(gw(7(xw)) 7(xwa) A gw(7(yw)) 7(ywa))}

{7 e Hrl(Vw e E*)(’V’a e E)(7(xw) 7(yw) 7(xwa) 7(ywa))}.
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Thus we have (o is denoted o) that for x, y e E*,

Xoy(ee’xRsy A Fo(x, y) 4 4))xRsy A (Vwex\S)(f(xw) f(yw) xwRryw).

The part is obvious since (Vw e E*)(Va e E)(7(xw) 7(yw) 7(xwa) 7(ywa))
(Vw e x\S)(Vu e xw\S)(f(xw) f(yw) f(xwu) f(ywu)) (Vw x\S)

(f(xw) f(yw) xwRryw) holds. To prove the part, consider 7:2*--, E
satisfying 7 e Ha- A (Vw e E*)(7(xw) 7(yw) "" xwRryw). Obviously 7 e Fo(x, y),
and such 7 exists if xRsy /x (Vw e x\S)(f(xw) f(yw) xwRa-yw) holds. (Note
that (Vw e x\S)(f(xw) f(yw) xwRa-yw) holds, and it is possible to define 7
so that (Vw x\S)(7(xw)= 7(yw),, xwRa-yw) may hold since 7 e Hr does not
pose any restriction on the values 7(xw) and 7(yw).) It is true that o is reflexive
but not always transitive.

Example 3.7. Let G G,, (see Example 2.5(ii)). G is a monoid but not a
group. We first define a binary relation a- on E* for a ddp Y (E, S, f) by

(Vx, y E*)(xry ,, xRsy A (Vw e x\S)(f(xw) <_ f(yw))).

a- is a pseudo-ordering on E* and right invariant [3]. Note that xRa-y x%a-y
/ y%a-x holds. Now for x, y e E* with xRsy, it follows that (Fc" is denoted F,,)

Fro(X, Y) {7 e HrI(Vw e Z*)(Va e E)((7(xw) -< 7(yw)

7(xwa) <= 7(ywa)) / (7(xw) 7(yw) 7(xwa) 7(ywa)))}

from the definition of G,.. Thus we have (" is denoted m) that for x, y e E*,

xOP,.y(.exRsy / F(x, y) (j) ... xRsy / (Vw e x\S)((f(xw) f(yw)

xwRa-yw) / (xa-y V ya-x))(i.e., xoy / (xa-y V yrx)).

(The part is obvious. To prove the part, consider 7:Z*--, E satisfying

7 e Ha- A (Vw e ,*)((xwa-yw ,* 7(xw) <- 7(yw)) A (ywrxw 7(yw) <= 7(xw))).

Obviously 7 e Fro(x, y), and such 7 exists if xOoy A (x%a-y V y%a-x) holds.) Again,,, is reflexive but not always transitive.
Example 3.8. Let G Gs (see Example 2.5 (iii)). Gs is a monoid but not a

group. Define a binary relation a- on Z* for a ddp-l" (Z, S, f) by

(Vx, y e Z*)(x a-y xRsy A (xRa-y V (Vw e x\S)(f(xw)< f(yw)))).

Then by an argument similar to Example 3.7, we have (qc is denoted s) that for
x, yeE*,

xsy *, xoY A (x a-y V y rX).

As previously, is reflexive but not always transitive.
Example 3.9. Let G Gp (see Example 2.5 (iv)). From the definition of

it follows that for x, y E* satisfying xRsy (Fp is denoted Fp),

Fp(x, y) {7 e Hrl(Vw e E*)(Va E)((7(xw) <- 7(yw)

7(xwa) <- 7(ywa)) A (7(xw) 7(yw)=> 7(xwa) 7(ywa))

/ (7(xw) =< 7(xwa)) / (7(yw)=< 7(ywa)))}.
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The additional restriction on 7, 7(xw)=< 7(xwa)A 7(yw)<= 7(ywa), makes it
difficult to define (I), in a simple manner. Namely, a somewhat involved dis-
cussion is required to see whether Fp(x, y) # K5 holds or not, though a necessary
and sufficient condition for Fp(x, y) # can be directly obtained from the dis-
cussion given in [3]. In general, p is neither reflexive nor transitive.

Example 3.10. Let G Ga (see Example 2.5 (v)). Ga is a group since g-1 is
given for g() + k by g-1() k. Define a binary relation Dr on Z* for
a ddp Y (E, S, f) by

(V x, y Z*)(xDry xRsy A (Vw, u x\S)(f(xw) f(yw) f(xu) f(yu))).

Dr is an equivalence relation and right invariant [7], [3]. F,(x, y)( Fc(x, y)) for
x, y e E* satisfying xRsy is given by

Fa(x, Y) {7 Hrl(Vw Z*)(Va E)(7(xw) 7(yw) 7(xwa) 7(ywa))}.

Obviously it holds that Fa(X y) # K5 :> xDry. Thus we have that for x, y e Z*
( is denoted ,), XaY " xDrY. Since Dr is an equivalence relation, a is also
an equivalence relation (i.e., is reflexive and transitive as well as symmetric).

DEFINITION 3.11. For a set B c E*, let F(B) be defined by

F(B) {? e Hrl(’v’w Z*)(Va e Z)(3gw, e G)(Vx e B)(gw,(?(xw)) ?(xwa))}.
(Note that gwa is independent of x.) Similarly, for B1,B2, ..., B, c Y*, let
F(B1, B2, Bn) be defined by

F(B1, B2, ..., B,) {7 e Hrl(Vi N)(Vw Z*)

(Va e Z)(:tg/w, e G)(Vx e Bi) (g(7(xw)) 7(xwa))},

where N {1, 2,..., n}. For Te AdS)with

E*/T {B1, B2, B,},

F(B,B2, "", B,} is also denoted by F(T). A set B c E* is -consistent if

(Vx, y e B)(xy) holds. An equivalence relation T Av(S) is -consistent if all

B E*/T is -consistent.
Remark 3.12. It is obvious that F(B) c F(x, y) holds for any x, y 6 B. Thus

for BieZ*/T where TCAv(S), F(Bi)# (Vx, yBi)(xRsy A F(x,y) # )
(Vx,y Bi)(xy) Bi is -consistent. The converse, however, does not al-

ways hold. (See also Assumption 3.15 and Remark 3.16.)
PROPOSITION 3.13. Let T6 Av(S) and Z*/T {B,B2, B,}. Define F(T)

by

F(T) {7 HrI(Vi N)(Va E)(3g, G)(Vx e B3(g,(7(x)) 7(xa))}.

Then F(T) F(T) holds.
Proof. F(T)c F(T)is obvious. To prove F(T) F(T), let 2 F(T). Since

T is right invariant, it holds that (Vie N)(Vw Z*)(Zlj N)(Biw c B;), where

Biw {xwlx Bi} Define ga for i6N, wE* and aE by g., g, where

Bw c B;. Then g,. e G since g{ e G by definition, and g,,,. satisfies

(gw,(7(xw)) gJ(7(xw)) 7(xwa)).(Vx e Bi)
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This proves 7 F(T). Q.E.D.
LEMMA 3.14. A ddp Y (52, S, f) is s-representable by a G-sdp if and only if

there exists T AF(S such that F(T) - .Proof. Necessity. Let G-sdp II (M(Q, E, qo, 2, QF), h, o) s-represent Y.
Define TeAF(S) by (Vx, ye52*)(xTy,c,,(x)= 2(y))(see Remark 2.11), and
7 Hr by (Vx 52")(7(x) (x)). Let Z*/T {B, B2, B,}. Then 7 e (T)
holds, since

(Vi N)(Va Z)(Vx Bi)(gi,(7(x)) 7(xa))

is satisfied by gi G defined by

(tX Bi)(gia(T(x)) h(y(x), ,(x), a)).

(gi G holds since I-I is a G-sdp.) Thus by Proposition 3.13, we have F(T) va .
Sufficiency. Let M be the standard construction of T (see Definition 2.10),

and let 7 e F(T). Define h’A x Q x E --, A as follows"
For each qi =- [Bi], where B c= 52"/T, and a 52, define hq,a() (=h(, qi, a)) by

hq,a() gia() for A,

where g, satisfies

gia e G A (Va 6 52)(Vx e Bi)(gi(7(x)) 7(xa)),

for 7 e F(T). (Such g, exists by definition.) Finally let o y(e). Then

sdp rI (M, h, o)

is a G-sdp s-representing Y. Q.E.D.
A main result of this paper, s-representation theorem, will be obtained by

adding the following assumption to Lemma 3.14.
Assumption 3.15. For G and ddpY (52, S,f) under consideration, any

-consistent T 6 Av(S) satisfies F(T) 4: .
Remark 3.16. As obvious from Remark 3.12, the converse of Assumption

3.15 is always true. Since the role of Assumption 3.15 in the s-representation
theorem is crucial, its validity will be extensively studied in 4. For example, it
will be shown that Assumption 3.15 holds true for Go, Gin, Gs and G, irrelevant of
the ddp r under consideration.

THEOREM 3.17 (s-representation). Under Assumption 3.15, a ddpg (52, S,f)
is s-representable by a G-sdp if and only if there exists a -consistent equivalence
relation T Av(S).

Proof. Necessity. By Remark 3.12, T Av(S defined in the proof of the
necessity of Lemma 3.14 is -consistent.

Sufficiency. This is obvious from Lemma 3.14 and Assumption 3.15. Q.E.D.
By applying Theorem 3.17 to Go, Gin, Gs and Ga (for which Assumption 3.15

holds true), we have the following corollaries which are those s-representation
theorems obtained in [3.

COIOLLAI 3.18. A ddp Y is s-representable by a Go-sdp if and only if there
exists T Av(S such that

(Vx, y e 52*)(xTy A x, y S (f(x) f(y) =, xRry)).
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(Note that xTy xRsy (x e S ,. y S) by definition.)
Proof. (Vx, y Y*)(xTy / x, y S (f(x) f(y) xRry)) ,, (Vx, y e E*)

(xTy (Vw e x\S)(f(xw) f(yw) xwRryw)) (since xTy (Vw e Z*)(xwTyw)
holds by definition) c,, (Vx, yeE*)(xTyxdoy)(see Example 3.6). Then by
Theorem 3.17 and Remark 3.16, the corollary is proved. Q.E.D.

COROLLhR 3.19. A ddp Y is s-representable by a Gm-sdp if and only if there
exists T AF(S such that

(Vx, ye Z*)(xTy (xry V yrx) A (x, y6 S (f(x) f(y) xRry))).

Proof. (Vx, y E*)(xTy (x%ry V y%rX) A (x, y S (f(x) f(y)
xRry)) , (Vx, y E*)(xTy (xry V y%rx) A xoy) (Vx, y E*)(xTy
XmY)(see Example 3.7). Q.E.D.
COROLLARY 3.20. A ddp Y is s-representable by a Gs-sdp if and only if there

exists Te AF(S such that

(Vx, y e *)(xTy (x rY V y rx) A (x, y e S (f(x) f(y) xRry))).

Proof. This is obvious from Theorem 3.17, Remark 3.16 and Example 3.8.
Q.E.D.

COROLLARY 3.21. A ddp Y is s-representable by a Ga-sdp if and only if there
exists T AF(S) such that

(Vx, y Z*)(xTy = xDry).

Proof. The proof is obvious from Theorem 3.17, Remark 3.16 and Example
Q.E.D.

4. Properties of F(T). This section discusses various properties of F(T) for
-consistent T Ae(S), and shows that F(T) :/: 2 is assured for any ddp Y (i.e.,

Assumption 3.15), if G satisfies certain conditions.
DEFINITION 4.1. Let G be a family of functions: A --, A, and let Ao c A.

Assume that g, G is defined for each pair (, r/) such that , r/ Ao (the order of
subscripts of g, is not important, i.e., g, g, is assumed), and they satisfy

(V Ao)(Vr , /2 e Ao)(gn,()
Let g*:Ao - A be defined by

(’, r/6 Ao)(g*(

Then G is said pairwise extendible if, for any Ao c A and a set of g, 6 G, , r/6 Ao,
satisfying the above condition, g 6 G exists such that g is an extension of g*.

Example 4.2. Let G Gm (see Example 2.5 (ii)). For a given Ao A(=E),
the existence of g,, , r/e Ao, satisfying the condition in Definition 4.1 implies
that

(’q’, r/ Ao)( <= r/= g*() <= g*(r/)).

It is then obvious that there exists g G which is an extension of g* :Ao - A
defined in Definition 4.1. Thus G,, is pairwise extendible. In a similar manner, it
is possible to prove that Go, Gs, Gp and G are all pairwise extendible.
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PROPOSITION 4.3. Let G be pairwise extendible. Then
(i) for any @consistent B c Z*, it holds that

V(B) {r(x, y)lx, y B},

(ii) for any -consistent B1, B2, B, c E*, it holds that

F(B,, B2,..., B.) F(B,).
i=1

Proof. (i) Let F(B)= fq{r(x, y)x, y e B}. That F(B) F(B)is obvious by
definition. To prove F(B) P(B), let e P(B). Then (Vw e Z*)(Va e Z)(Vx, y e B)
(3g e G)(gra(7(xw))= ?(xwa)A gwr(7(yw))= ?(ywa)). Since G is pairwise ex-
tendible, this implies the existence of gwa e G such that

(Vw e Z*)(Va e E)(Vx e B)(gwa(/(xw)) (xwa)).

(For given w e Z* and a e Z, consider {y(xw)lx e B} as Ao of Definition 4.1, and for
y(xw) Ao and r/ y(yw) Ao, consider gXYwa as gr/ of Definition 4.1.) Thus we

have 7 e F(B). Part (ii) is obvious by definition (see Definition 3.11). Q.E.D.
Now we show the next theorem which will be used as a basis for proving the

validity of Assumption 3.15.
THEOREM 4.4. Let G be pairwise extendible. For each pair x, y Z* with xy,

assume that there exists a nonempty F(x, y) satisfying
(i) F(x, y) = F(x, y);

(ii) F(x, y) can be written as follows"
(x, y) {y" 2:* AI(Vw e Y*)((y(xw), y(yw)) e A(x, y; w))},

where A(x,y;w) A x A;
(iii) A(x, y;w) A(xw, yw; e) holds for any x, y, w e Z* satisfying xOy.

(Condition (ii) assumes that the restriction posed on 7 e F(x, y) can be decomposed
into a set of restrictions posed on pairs (7(xw), 7(yw)).)
Furthermore, for C-consistent Te At(S with E*/T {B1,B2, B,}, let

r*(S,) {. 2* Al(Vx, y e B,)((y(x), y(y)) e A(x, y; e))}.

Then F*(Bi) :/: for 1, 2,..., n implies F(T)
Proof. First note that the restriction posed on ; e F*(Bi) is limited to the

values 7(x),xeBi, and no restriction is posed on y(x), x B. Therefore

B CI Bj for -j implies that (Vi e N)(F*(B)
Let e CI F*(Bi). Then for any x, y Bi, Bi e Z*/T, we have (Vw Z*)(:IBj e Z*/T)
(xw, yw e By) = (Vw e 2*)((7(xw), y(yw)) A(xw, yw; e)) =. (Vw e Z*)((y(xw),

y(yw)) A(x, y; w)) (by condition (iii)) F(x, y). Thus f-) {F(x, y)lx, y Be} by
condition (i). Since G is pairwise extendible, this implies F(Bi) for 1, 2, ..., n
by Proposition 4.3 (i). Hence F(T) follows by Proposition 4.3 (ii). Q.E.D.

Example 4.5. Let G Go. For x, y 6 Z* with xoy, let

’o(X, y) {7 Hrl(Vw Z*)(7(xw) 7(yw)*. xwRryw)}.

From the discussion given in Example 3.6, it is obvious that f’0(x, y) c Fo(x y).
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F0(x, y) is alternatively defined by

[’o(X, y) {7"E* AI(Vw 2*)((7(xw), y(yw)) A(x, y" w))},
where

{(f(xw), f(yw))} if xw, yw S,

A(x,y;w) {(,)leA} ifxw, ywqS / xwRryw,

{(, r/)l -%= r/ / , r/ A} if xw, yw q S / xwRryw.

Thus it holds that for any w E*,

A(x, y; w) ZX(xw, yw ),

and condition (iii) of Theorem 4.4 is satisfied. It is also easy to prove that
F*(Bi) - for any o-consistent Bi c Z* (see Example 3.6). Consequently, by
Theorem 4.4, we are assured that Fo(T 4= for any o-Consistent T Av(S).

Example 4.6. Let G G,,. For x, y 6 E* with Xmy, let

where

/(x, y w)

{(f(xw), f(yw))} if xw, yw e S,

{(, )l e A} if xw, yw q S A xwRryw,

{(,r/)l,qeA A < r/} ifxw, ywqS A xw%ryw A xwRryw,

{(,/)l,r/eA A r/ < } ifxw, ywqS A yw%rxw A xwRryw.

It is obvious that Fm(x y)c Fm(x y) (see Example 3.7), and A(x, y; w)= A(xw,
yw; e). Furthermore F*(B) :A obviously holds for any m-Consistent B c E*.
Hence Fm(T holds for any m-COnsistent T e Av(S).

Example 4.7. The case of G Gs can also be treated in a manner similar to
G,,. We are also assured that Fs(T va for any s-consistent Te Av(S).

Example 4.8. Let G Gp. It seems difficult to define Fp(x, y) satisfying con-
ditions of Theorem 4.4, because of the restriction (Vw e E*)(7(x) _< 7(xw)) required
by Go. (Note that the above restriction is not on the pair (,(xw), 7(yw)), but on the
pair (7(x), 7(xw)).)

It is also possible to apply Theorem 4.4 to Ga, though the construction of
Fa(x y) is slightly more complicated. However, it can also be derived as a corollary
of the following theorem.

THEOREM 4.9. Let G be pairwise extendible and, moreover, let G be a group.
Then F(T) (2 holds for any -consistent T A(S).

Proof. Let E*/T {B1, B2, "", B,}. For each B W, where
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define wi satisfying Biw c S. If Bi c S, w is assumed to be e e 2;*. Let /:E* --, A
be defined by

f(xwi) ifxeBic W
7(x) 7(u) if B W, where u is the longest prefix

of x such that u e W.

(Note that Bi is included in one of W and E* W since T e Av(S).) Now recall
that for each x, y Bi, 7xY:E* ---’ A exists such that

"fly ff Hr A (Va 6 Z)(zlgy ff G)(g:y(Txy(x)) "ffY(xa) A g:Y(’ffY(y)) yXy(ya)),

since x@y. Next define hy G for each x, y B = W such that

h:ff(7’(x)) 7(xwi)(=f(xw,)= y(x)).

For example, h’ is given by

h:{y gXa,- Yk-, gYlgaxY

where w ala2 ak and xj xal aj / yj yal aj, and gXa;Y’ is the one
defined above. Then it follows that

(Vi e N)(Va e E)(Vx, y e B,)(zI,y e G)(y(y(x)) y(xa) A Y(y(y)) y(ya)),

because g,,xy can be given, for example, as follows"

x’y’ xy xy xa A yahj g (h if B c W A Ba Bj c W, where x’ y’

gi if Bia Bj W.

(See Fig. 1.) Since G is pairwise extendible, this implies that

(Vi N)(Va e E)(i, 6 G)(Vx 6 Bi)(i,(y(x)) y(xa)).

Therefore y F(T) by Proposition 3.13. Q.E.D.

FIG. 1. Illustration of,a defined in the proofof Theorem 4.9

/
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Example 4.10. Let G Ga. Since G is pairwise extendible and a group, it
follows from Theorem 4.9 that F(T) 4: holds for any Oa-Consistent Te Av(S).

5. G-sdp with unique minimal representation. In this section an important
special class of G-sdp’s, for which the unique minimal representation of a ddp Y
is guaranteed to exist, is introduced. After giving such a theorem, some sufficient
conditions for the theorem to hold will be discussed.

THEOREM 5.1. Assume that is an equivalence relation on E*. Then under
Assumption 3.15, a ddp T is s-representable by a G-sdp if and only if I:*/1 <
holds. Furthermore, if lY*/I < , there exists the unique minimal s-representation

oft with I*/OI states, in the sense that all minimal s-representations H (M, h, 0)
have the same fa M.

Proof. Necessity. Let H (M(Q, Z,, qo, 2, QF), h, o) s-represent Y. Then T
defined by xTy , (x) ].(y)is an equivalence relation on E* satisfying Te AF(S).
Note that A(S) also holds since is an equivalence relation by assumption,

is right invariant (as shown in Remark 3.3) and refines S (recall that =< Rs
by definition). As shown in Theorem 3.17, T is O-consistent and hence T <_

follows (see Definition 2.8). Thus we have IE*/OI =< IE*/T < c.
Sufficiency. Since is O-consistent by definition, and AF(S by I:*/1 < ,

Theorem 3.17 can be immediately applied.
Uniqueness. Let H (M(Q, Z, qo, 2, QF), h, 0) be a minimal s-representation

of Y by a G-sdp. Let T be defined by xTy , (x) (y). Then T =< as proved in
the proof of necessity. However, since H is minimal, it holds that IE*/TI _-< IE*/OI.
Thus we have T O, and M is the standard construction of (see Remark 2.11).

Q.E.D.
COROLLARY 5.2. (See [7].) A ddp Y is s-representable by a Ga-sdp if and only

if IE*/Oa < (see Example 3.10). Furthermore, if lY*/Oal < , there exists the
unique minimal representation of-Y by a Ga-sdp.

Proof. (a is an equivalence relation by Example 3.10, and Assumption 3.15
holds for Ga. Q.E.D.

The uniqueness of the minimal representation of the above special class of
G-sdp’s cannot be extended to other classes of G-sdp’s such as Go, Gin, Gs and
Gp-sdp as demonstrated in [6].

Now we move to the investigation of properties which make an equivalence
relation.

DEFINITIOY 5.3. G is transitive if

(1, 2, 3 G A)(q/1, t]2, ?]3 A)((qg,2 e G)(Zlg23 e G)(gl2(l) 1

A gx2(2)= g23(2) r/2 A g23(3)-- //3)=>(::ig,3 e G)(gl3(l)-//1

A g13( 3) // 3))

holds.
Example 5.4. Go is not transitive. To prove this, consider the case in which

1 3 :: 2 holds and r/, r/z, r/3 are all distinct. Then g3 G of Definition 5.3
does not exist, though g2, g23 G do exist. Similarly, it is possible to prove that
Gin, G and Gp are not transitive.
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Example 5.5. G is transitive since (71gleGa)(71ge3Ga)(gle(x)= r/1/ gxe(e)
r]2 / g23(2) 2 g23(3) 3)(1 2 1 2) (2 3 2 3)
( 3 qa q3) (3g3 e G,)(g3() q A g3(3)= q3).
THZOZM 5.6. Let be reflexive, and let G be transitive and satisfy

(Vx, y, z e Z*)(xOy A yOz F(x, y) F(y, z) ).

Then is an equivalence relation.

Proof It is sucient to prove the transitivity of . If xy A yz holds,
then there exists 7 e F(x, y) F(y, z) by assumption, such that

(Vw Z*)(Va Z)(3g G)(g(7(xw)) 7(xwa) A g(7(yw)) 7(ywa)),
yz

Since G is transitive, this implies that

(Vw 6 E*)(Va 6 E)(]g] 6 G)(g(7(xw)) 7(xwa) A g](y(zw)) 7(zwa)),

and hence xz follows. Q.E.D.
Remark 5.7. The assumption in Theorem 5.6 that

(Vx, y, z e 2*)(xOy yOz F(x, y) F(y, z) )

holds for most of important G. In particular, if G is a group, this is always guar-
anteed as proved below.

Proof. Let x, y, z e E* satisfy xy A yz, i.e.,

(37’ e H)(Vw e E*)(Va e E)(3g e G)(g(TX’(xw))

7r(xwa) g(7r(yw)) 7r(ywa))

(37 6 Hr)(Vw 6 2*)(Va e 2)(3g 6 G)(g,(7(yw))

g.(7 (zw))= 7"(zwa)),

and xRsy A yRsz (hencexS yS zS). First consider the case ofxS .
Then we can let xgw, g, gt for any w 2" and a , and 7 7 , where

7(u) k A (constant) for all u 6 Z*. It is direct to show 7 F(x, y) F(y, z).
Next consider the case of xS . For each v Z*, let u6 xvNS (=yves
zvS) be defined if xvNS . If xv S, u is taken to be e. Furthermore if

xv yv’ (or zv’), u and u, satisfy u u,. Define 7" 2" A as follows"

7(xv) f(xvu.) 7(yv) f(yvu.) 7(zv)= f(zvu.)

for v satisfying xvS(= yves zvS) , and

(xv) 7(xp) () () (z) 7(z)

for v satisfying xvS , where p is the longest prefix of v such that xpS
holds (p is independent of x, y and z because xS yS zS). One can
arbitrarily define 7(u) for u 6 2", such that none of x, y and z is a prefix of u. Based
on this 7, define h G satisfying

h(yX(xv)) 7(xv) A h(y(yv)) 7(yv)
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for each v e E*. hy is, for example, given by

hr
gvu lfxvS v
xy xygpup(gpq) if xv\S ,

where v pq, p, q E*, and p is the one defined above. Here g,xr with r, s E*,
is given by

gvx gT_ au grazgvax
where s aa2 a rj ra aj forj 1,2,..., k 1, and g,, is the one
given in the definition of yr above. (In other words, g{(yr(xr)) yxr(xrs) holds.)
Since G is a group, hr 6 G. Now let

-xr hxrxr hXr]gwa "’w’

for w E* and a E, where w’ wa. Since G is a group, gwa G. Then we have
that for any w e E* and a e E,

((xw)) hXyXy(hXy-w,ow.,-w, ((xw))
xy xy xyhw’gwa( (xw))

hxwa))

(xwa),

gwa(7(YW)) 7(ywa).

Thus / F(x, y). In a similar manner, it is possible to prove 7 F(y, z). Hence
/6 F(x, y) 0 F(y, z). Q.E.D.

Example 5.8. Ga is a group and transitive (see Example 3.10 and Example
5.5). Since (I)a is obviously reflexive, (I) is an equivalence relation by Theorem 5.6
and Remark 5.7.

Next, we will introduce a class of G whose transitivity can be easily proved.
Thus (I) defined for such G is an equivalence relation, and hence Theorem 5.1
may be immediately applied.

DEFINITION 5.9. G is definable by single point if

(Vg, h 6 G)((:I A)(g() h()) ::, g h)
holds.

Example 5.10. G is definable by single point since (Vg, hG)((:i A)
(g() h()) (qk A)(g() + k A h() + k)= g h).

Example 5.11. Let Gmu {g’E+ E+I(tkE+)(VE+)(g() .k)},
where E+ { EI > 0}. Gmu is a group since for any g(() . k, h() . k-
satisfies (V E+)(h(g()) ) (i.e., h g- 1). Moreover, Gmu is definable by single
point since (Vg, h Gmul)((:l E +)(g() h()) (:ik E+)(g() . k A h(). k) g h) holds.

Example 5.12. Let Gpow {g’E’+ E’+I(:IkE+)(VE’+)(g() k)}, where
E’+ { E] > 0 A - }. Gpow is a group since for any g() k, h() ((l/k)
satisfies f(g()) . Moreover, Gpo is definable by single point since (V E’+)
(Vkl, k2 E)(kl k2 k k2) holds.
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Example 5.13. Let Gexp {g’E+ --}E+I(:IkE+)(VE+)(g() k)). Al-
though G.exp is not a group, Gexp is definable by single point as easily proved.

PROPOSITION 5.14. If G is definable by single point, then G is pairwise ex-
tendible.

Proof. Let Ao c A. Then (1, 2, 1, F]2 A0)((Zlg, e G)(3g,,, e G)

g,, (since G is definable by single point)g gnng). Thus g defined by
g gC,, with , q 6 Ao (gC, is independent of , q as proved above) belongs to G,
and it is an extension of the g* given in Definition 4.1. Q.E.D.

PROPOSITION 5.15. U G is definable by single point, then G is transitive.

Proof. (V, 2, 3 A)(Vn, n2, 3 E A)((]g2 6 G)(]g23 6 G)(g2() q
A ga2(2) q2 A g23(2) q2 A g23(3) q3) g2 gz3(g) (since G is de-
finabl by single point) g() q A g(3) q3). Q.E.D.

THEOREM 5.16. Let G be definable by single point and G be a group. In addition,
let be reflexive. Then is an equivalence relation. Therefore, a ddp Y is s-rep-
resentable by a G-sdp if and only if IE*/I < . In case of IE*/[ < , there
exists the unique minimal s-representation in the same sense as that of Theorem 5.1.

Proof. G is transitive by Proposition 5.15. By assumption, G is a group, and
furthermore, is reflexive. Thus is an equivalence relation by Theorem 5.6 and
Remark 5.7. Since G is pairwise extendible by Proposition 5.14, F(T) holds
for any -consistent T 6 Av(S) by Theorem 4.9. Thus Theorem 5.1 can be directly
applied. Q.E.D.

Example 5.17. Theorem 5.16 can be applied to Ga, Gmu and Gpow (see
Examples 2.5, 5.11 and 5.12), since they are definable by single point and groups,
respectively.

Example 5.18. Gexp of Example 5.13 is transitive by Proposition 5.15. Although
Gexp is not a group, it is possible to prove (Vx, y, z 6 E*)(xy A yz F(x, y)

F(y, z) ) holds for Gexp (the proof is omitted). Thus is an equivalence
relation by Theorem 5.6, and hence Theorem 5.1 is applicable to Gexp.

6. Discussion. A comment is given here that the binary relation (abbrevi-
ation of ) defined below may be used instead of in most of the preceding
discussion"

(qx, y Z*)(xy xRsy A F(x, y) )

(x, y) {y Hrl(a )(g, G)(ga(Y(x)) 7(xa) A ga(Y(Y)) 7(Ya))}.
This binary relation has the feature that it can be easily checked for each x, y 6 E*,
since only values y(x), 7(Y), y(xa) and y(ya) for a 6 E are relevant. By using an
argument similar to the proof of Proposition 3.13, it can be shown that A T

A T holds for any -consistent T6 Av(S). (P A T is the binary relation
defined by (Vx, y 6 E*)(x(P A T)y xPy A xTy).) Based on this, it is possible to
prove that the representation theorem, Theorem 3.17, holds even if is replaced
by . The argument of 4 may also be applied to with slight modifications.

However, we did not adopt this definition in the preceding sections because
then the search for T6 Av(S) used in the representation theorem might become
more difficult, since the restriction incurred by the relation xy is rather weak
compared with that incurred by xy. In other words, if we used instead of ,
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the equivalence relation Ts AF(S satisfying the conditions of the representation
theorem must take care of most of properties which make the representation
possible, while otherwise the binary relation tI) takes care of the essential part of
representation.

Furthermore, the discussion in 5 cannot be directly applied to since (I) is
no longer right invariant.

Finally, it should be noted that although most of representation theorems
obtained in the earlier papers [3] and [7] are special cases of Theorem 3.17, there
exist many others to which our theory is not readily applicable. Such examples
are Gp-sdp defined in Example 2.5, and various G-sdp’s for which g e G is a
function from Z to Z (integers), as defined in Example 2.6 and in [4. It is desired
to develop a more general theory which can include all these G-sdp’s.

Acknowledgment. The author wishes to appreciate Professor H. Mine of
Kyoto University for his encouragement and valuable discussion.

REFERENCES

[1] M. DAVIS, Computability and Unsolvability, McGraw-Hill, New York, 1958.
[2] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and Their Relation to Automata, Addison-

Wesley, Reading, Mass., 1969.
[3] T. IBARAIO, Representation theoremsfor equivalent optimization problems, Information and Control,

21 (1972), pp. 397-435.
[4] --., Classes of discrete optimization problems and their decision problems, working paper,

Dept. of Applied Math. and Physics, Kyoto Univ., 1971.
[5] --., Solvable classes ofdiscrete dynamic programming, J. Math. Anal. Appl., 43 (1973).
[6] --, Minimal representations ofsome classes ofdynamic programming, working paper, Dept. of

Applied Math. and Physics, Kyoto Univ., 1972.
[7] R. M. KARP AND M. HELD, Finite-state processes and dynamicprogramming, SIAM J. Appl. Math.,

15 (1967), pp. 693-718.
[-8] M. RABIN AND D. SCOTT, Finite automata and their decision problems, IBM J. Res. Develop., 3

(1959), pp. 115-125.



SIAM J. COMPUT.
Vol. 2, No. 3, September 1973

ENUMERATION OF THE ELEMENTARY CIRCUITS OF A
DIRECTED GRAPH*

ROBERT TARJANf

Abstract. An algorithm to enumerate all the elementary circuits of a directed graph is presented.
The algorithm is based on a backtracking procedure of Tiernan, but uses a lookahead and labeling
technique to avoid unnecessary work. It has a time bound of O((V. E)(C + 1)) when applied to a
graph with V vertices, E edges, and C elementary circuits.

Key words, algorithm, backtracking, circuit, cycle, digraph, graph.

There is a class of problems in which the goal is the enumeration of a set of
objects associated with a given graph. Examples include enumeration of the
elementary circuits, enumeration of the spanning trees, and enumeration of the
cliques of a given graph. For each of these three problems, graphs with V vertices
may be constructed which have 2v or more objects to be enumerated. Thus, in
general, algorithms to solve these problems must have a running time exponential
in the size of the graph. However, in practical applications, the number of objects
to be enumerated is usually a much smaller function of the size of the graph.
Thus it would be useful to find enumeration algorithms with running times
polynomial in the number of objects generated. Presented here is an algorithm for
enumerating elementary circuits whose running time is a small-degree polynomial
function of the size of its input and output.

A (directed) graph G (, g) consists of a set of vertices and a set of
ordered pairs of vertices g, called the edges of G. If (v, w) is an edge of G, vertices
v and w are said to be adjacent. A path in a graph is a sequence of edges (v l, v2),
(v2, v3),’", (v,_ 1, v,), such that the terminal vertex of an edge in the sequence
is the initial vertex of the next edge. A path may be denoted by the sequence of
vertices on it. An elementary path contains no vertex twice. An elementary circuit
is an elementary path with the exception that its first and last vertices are identical.
Two elementary circuits whose edge sequences are cyclic permutations of each
other are regarded as identical. For simplicity we shall assume that a graph con-
tains no self-loops (edges of the form (v, v)) and no multiple edges.

We wish to enumerate all the elementary circuits of a given graph. Tiernan 2]
presents an algorithm for accomplishing this. His algorithm uses an essentially
unconstrained backtracking procedure which explores elementary paths of the
graph and checks to see if they are cycles. If the vertices of the graph are numbered
from 1 to V, the algorithm will generate all elementary paths p (vl, v2, "", vk)
with v < vi for all 2 __< =< k, by starting from some vertex v l, choosing an edge
to traverse to some vertex v2 > v l, and continuing in this way. Whenever no new
vertex can be reached, the procedure backs up one vertex and chooses a different
edge to traverse. If vl is adjacent to vk, the algorithm lists an elementary cycle
(v 1, v, ..., v, v 1). The algorithm enumerates each elementary cycle exactly once,
since each such cycle contains a unique smallest vertex v and thus corresponds

* Received by the editors October 17, 1972, and in revised form March 28, 1973.
5" Department of Computer Science, Cornell University, Ithaca, New York 14850.
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212 ROBERT TARJAN

to a unique elementary path with starting vertex v. However, the algorithm has
a worst-case running time exponential in the size of its output; it may explore
many more elementary paths than are necessary. Consider the graph G in Fig. 1.
It contains 3n + 1 vertices, 5n edges and 2n elementary circuits. However, G
contains 2" elementary paths from vertex 1 to vertex 3n + 1, all of which will be
generated by Tiernan’s algorithm. Thus the worst-case time bound of the algo-
rithm is exponential in the number of elementary circuits, as well as exponential
in the size of the graph.

2 5 3n-I

FIG. 1. An example showing the inefficiency of Tiernan’s algorithm

Weinblatt [3] gives an algorithm for finding elementary circuits which is
related to Tiernan’s, but which requires substantially more bookkeeping. The
algorithm has the property that it examines each edge of the graph exactly once.
Given a graph G, we start from some vertex and choose an edge to traverse. We
continue the search at each step by selecting an unexplored edge leading from the
vertex most recently reached which still has unexplored edges. Eventually each
edge of the graph will be traversed. Such a search is easy to program, because the
set of old vertices with possibly unexplored edges may be stored on a stack. (See
[1], for instance.) This sequence of vertices is an elementary path from the initial
vertex to the vertex currently being examined. (Weinblatt calls it the TT, or "trial
thread".) Whenever we traverse an edge leading to a vertex already on the stack,
we have found a new elementary circuit, corresponding to a sequence of vertices
on top of the stack. Whenever we traverse an edge leading to an old vertex which
is not currently on the stack, some portion of the stack plus a sequence of sub-
paths from circuits already found may form a new elementary circuit. Weinblatt
uses a recursive backtracking procedure to test combinations of subpaths from
old circuits to see if they give new circuits in this way.

Although Weinblatt’s algorithm is often much more efficient than Tiernan’s,
the recursive backtracking procedure requires exponential time in the worst
case. For example, consider the graph in Fig. 2. It contains 3n + 2 vertices, 5n + 3
edges and 2n + 2 elementary circuits. Suppose we start Weinblatt’s algorithm by
exploring the edge (0, 1). Then the algorithm will generate all circuits of the form
(3i- 2, 3i + 1, 3i, 3i- 2) and (3i- 2, 3i + 1, 3i- 1, 3i- 2) rapidly. Eventually
the algorithm will traverse edge (0, 3n + 1). Then Weinblatt’s recursive procedure
will attempt to find an elementary path back to vertex 0 by combining parts of
old circuits. The recursive backtracking will require an exponential amount of
time but will produce only one new circuit, i.e., (0, 3n + 1, 0). Thus Weinblatt’s
algorithm does not have a running time polynomial in the number of circuits.

However, it is possible to construct a polynomial-time algorithm for the
circuit enumeration problem. Such an algorithm uses Tiernan’s backtracking
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Fig. 2. An example showing the inefficiency of Weinblatt’s algorithm

procedure restricted so that only fruitful paths are explored. The circuit enumera-
tion algorithm is presented below in ALGoL-like notation. The algorithm assumes
that the vertices of the graph are numbered from to V, and that the graph is
represented by a set of adjacency lists, one for each vertex. The adjacency list
A(v) of vertex v contains all vertices w such that (v, w) is an edge of the graph. The
point stack used in the algorithm denotes the elementary path p currently being
considered; the elementary path has start vertex s. Every vertex v on such a path
must satisfy v >__ s. A vertex v becomes marked when it lies on the current ele-
mentary path p. As long as v lies on the current elementary path or it is known
that every path leading from v to s intersects p at a point other than s, v stays
marked.

For each vertex s, the algorithm generates elementary paths which start at s
and contain no vertex smaller than s. Once a vertex v has been used on a path, it
can only be used to extend a new path when it has been deleted from the point
stack and when it becomes unmarked. A vertex v becomes unmarked when it
might lie on a simple circuit which is an extension of the current elementary path.
Whenever the last vertex on an elementary path is adjacent to the start vertex s,
the elementary path corresponds to an elementary circuit which is enumerated.
The marking procedure is the key to avoiding the unnecessary searches which
may occur when using Weinblatt’s algorithm or Tiernan’s original algorithm.

ALGORITHM.

procedure circuit enumeration;
begin

procedure BACKTRACK (integer value v, logical resultf);
begin

logical g;
f: false;
place v on point stack;
mark (v) := true:
place v on marked stack;
for w A(v) do

if w < s then delete w from A(v)
else if w s then

begin
output circuit from s to v to s given by point
stack;
f := true;
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end;

end
else if mark (w) then

begin
BACKTRACK (w, g);
f:=fVg;

end;
commentf true if an elementary circuit containing the

partial path on the stack has been found;
iff true then

begin
a: while top of marked stack : v do

begin
u := top of marked stack;
delete u from marked stack;
mark (u):= false;

end;
delete v from marked stack;
mark (v):= false;

end;
delete v from point stack;

end;
integer n;
for i:= until V do mark (i):= false;
for s’= until V do

begin
b: BACKTRACK (s, flag);

while marked stack not empty do
begin

u:= top of marked stack
mark (u) := false;
delete u from marked stack;

end;
end;

LEMMA 1. Let c (v 1, v2, vn, Vl) be an elementary circuit in a graph G,
satisfying vi > v for 2 <= <= n. Let the circuit enumeration procedure be applied
to G. Consider the execution of statement b" BACKTRACK (s, flag), with s
During the execution of this statement (which may involve recursive calls on BACK-
TRACK), we have" for all <= k <= n, if v is marked, then for some j >= k, vj is on
the point stack.

Proof. We prove the lemma by induction on k, with k decreasing. Let k n.

Suppose v, becomes marked. Then it is added to the point stack at the same time.
Before v, is removed from the point stack, variable f becomes true, since (v,, v)
is an edge of the graph. Thus v, will become unmarked when it is deleted from the
stack, and the lemma is true for k n.
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Let the lemma be true for vi with > k. We prove the lemma for Vk. Suppose
Vk becomes marked. Then Vk is placed on the point stack. There are two cases"

(a) Vertex Vk is placed on top of some vj on the point stack with j > k. Then
vj is also underneath Vk on the marked stack. Thus if Vk is marked, vj is also marked.
But if vj is marked, there is some Vl with >_ j on the point stack by the induction
hypothesis, and since >_ j > k, the lemma holds for Vk.

(b) Vertex Vk is not placed on top of any vj on the point stack with j > k.
Then when the edge (Vk, Vk/ 1) is examined, Vk+l is unmarked by the induction
hypothesis, and will be added to the stack. Subsequently Vk+ 2, Vk/ 3,’’’, V, will
be added to the stack, and an elementary circuit containing Vk will be found. A
flag is set true to note this discovery. The flag filters up through recursive returns
from BACKTRACK, and Vk will be unmarked by step a when Vk is removed from
the point stack. Thus the lemma holds for Vk.

By induction, the lemma holds in general.
LEMMA 2. The circuit enumeration algorithm lists each elementary circuit of

a given graph exactly once.

Proof. The starting vertex of any elementary path p generated by the al-
gorithm is the lowest numbered vertex on the path p. Since the algorithm generates
an elementary path at most once, and since an elementary circuit has only one
lowest numbered vertex, each elementary circuit is generated at most once.

Let c (v l,/)2, /)n, /)1) be an elementary circuit. Let the circuit enumer-
ation procedure be applied to G. Consider the execution of step b" BACKTRACK
(s, flag) with s v l. If (v t, ..., v) is on the point stack for any _<_ k _<_ n, then
by Lemma 1, v+l must be unmarked, and v+ will be added to the point stack
on top of v when edge (v, v+ 1) is examined. By induction, (v, v2, "", v,) will
eventually be on the point stack, and the algorithm will enumerate the circuit c.
Thus each elementary circuit is generated at least once.

LFMMA 3. If G is a graph with V vertices and E edges, applying the circuit
enumeration algorithm to G requires O(V + E + S) space, where S is the sum of
the lengths of all the elementary circuits, and O(VE(C + 1)) time, where C is the
number of elementary circuits.

Proof. The space bound is obvious;storage of the graph’s adjacency lists
requires O(V + E) space, storage for the algorithm’s data structures requires
O(V) space, and storage for the output requires O(S) space. If we do not want to
store all the elementary circuits after they are generated the algorithm requires
only O(V + E) space.

The time bound follows from the following observation" after a circuit c is
enumerated, but before another circuit with the same start vertex is enumerated,
any vertex can become unmarked at most V times (at most once for each vertex
on the point stack when c is enumerated). Thus after c is enumerated but before
another circuit with the same start vertex is enumerated, any edge can be explored
at most V times. After the start vertex has changed but before any new circuits
are enumerated, any edge can be explored only once, since no vertices become un-
marked during this time. Thus the algorithm requires O(E) time for each start
vertex plus O(VE) time for each circuit, for a total time of O(VE(C + 1)). In
terms of V, E and S, the time bound is O(E(S + V)).

The variation of Tiernan’s algorithm presented here has a running time
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polynomial in the size of the input and output, a fact not true in general for either
Tiernan’s original circuit generation algorithm or for Weinblatt’s algorithm.
However, the number of circuits may be exponential in the number of vertices. On
graphs with very large numbers of circuits, all three algorithms run in time ex-
ponential in the size ofthe problem graph. On graphs with simple looping structure,
Weinblatt’s algorithm may run faster than the one presented here by a factor of
at most V, but the new algorithm may be speeded up in this case if a little pre-
processing is done. Tiernan’s original algorithm is slightly simpler to program
than the version presented here, but by avoiding the labeling process it may
perform many unnecessary searches. The new version has a provably reasonable
time bound on all types of graphs.

The new algorithm was implemented in ALaOL W, the Stanford University
version of ALaOL (see [4]), and run on a variety of sample graphs using an
IBM 360/65. The program counted 125,664 circuits in a nine-vertex complete
graph in 101.2 seconds. The running time of the new algorithm was faster than
that claimed by either Tiernan or Weinblatt, although they used slower com-
puters (B-5500 and an IBM 7094, respectively). The new algorithm is certainly
competitive in practice. It is still an open question whether a circuit enumeration
algorithm exists whose time bound is linear in the size of its input and output.
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TOWARD CHARACTERIZATION OF PERFECT
ELIMINATION DIGRAPHS*

LOREN HASKINS" AYD DONALD J. ROSE:

Abstract. Perfect elimination digraphs arise in the study of Gaussian elimination on sparse
linear systems. With a view toward numerical computational complexity we show four conditions
(C1-C4) to be necessary for the perfect elimination property. The sufficiency of C1 is shown in general
and the sufficiency of C2-C4 is shown in the symmetric case. The equivalence of C1-C3 is conjectured.

Key words, sparse linear systems, Gaussian elimination, perfect elimination matrices, directed
graphs, paths, separators

1. Introduction. Perfect elimination digraphs arise in the graph-theoretic
study of the numerical solution of sparse linear systems by Gaussian elimination.
Our investigation is an extension and generalization of earlier work by Rose [4],
[53 who considers symmetric linear systems and, hence, undirected graphs. In
addition to providing insight into the combinatorial nature of the algebraic
process of Gaussian elimination on sparse systems, such a graph-theoretic ap-
proach appears useful in providing bounds on the numerical computational
complexity of solving such systems (see Hoffman et al.3]).

In 2 we define perfect elimination digraphs and relate them to the algebraic
process of elimination. This brief discussion is analogous to the more extensive
presentation given in [53 for symmetric systems. A further exposition of elim-
ination methods for numerically solving linear systems is available in Forsythe
and Moler 2].

Section 3 contains some connectivity considerations which we use in 4. In
particular, we develop and examine the notions of minimal x, y paths and vertex
separators. When the digraph can be regarded as an undirected graph, this notion
of separation becomes the usual notion; however, our development avoids any
generalized notion of components of a graph with respect to a separator.

In 4 we examine four conditions (C1-C4) on digraphs and relate them to
the perfect elimination condition. These conditions are shown (or previously
known) to be equivalent when the graph is undirected. The perfect elimination
property and C1 are conditions requiring the existence of special orderings of the
vertex set, while conditions C2-C4 are global conditions on paths and separators.
We show that the perfect elimination condition and C1 are equivalent and that
C2-C4 are necessary (but C4 is not sufficient) for perfect elimination. Finally we
conjecture that the perfect elimination property and C1-C3 are equivalent when
G is strongly connected.

2. Motivation and preliminaries. We consider the numerical solution of the
linear system
(2.1) mx b,
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where M is n n and sparse, and PMPr has a stable (with respect to rounding
error) LU factorization for any n n permutation matrix P. That is, for any
fixed P, PMPr LU where L (lij) and U (uij) are respectively unique unit
lower triangular and upper triangular n n matrices. Let C (cj) be the n n
matrix (depending on P) defined by

Cij--" lij > j,
(2.2)

Cij Uij <= j.

Comparing the zero-nonzero structure of C with that of PMPw gives the extent
of fill in caused by the factorization. We wish to study combinatorially those
matrices M for which there exists a P such that B PMPw (bo) has

(2.3) bij 0 Cij 0

(disregarding accidentally created zeros).
Algebraically, the M LU factorization proceeds as follows. Let M be

written as

where a is scalar, r and c are (n 1) x and M is (n 1) x (n 1). Then the
first elimination" step of the LU factorization of M may be written as

(2.4) M=M)= [ lla rr 1c/a 0 --crr/a =LU.

One then proceeds recursively, and supposing the LU factorization of M2)

(crr/a) is M2) L2U2, we obtain the LU factorization of M as

U
Given M as in (2.1) we define the directed graph ofM as the pair G(M) (X, A),

where vertex x X is associated with row of M and arc a (x, x)e A if and
only if m 0 and j. Here the vertices of X are regarded as ordered’i.e.,
X {x}=. G(M) with unordered vertices represents the equivalence class
PMPr.

To interpret (2.4) graph-theoretically, we proceed as follows. Given G(M),
the elimination graph G is obtained from G by deleting y and its incident arcs
and adding an arc (x, z) whenever there exists a directed x, z path of length 2
containing y. That is, formally,

(2.5) G (X y, A(X y) U ),
where for V c X,

(2.6) A(V) {(x, y) AIx, y V}
and

.(2.7) z, {(x, z)[(x, y), (y, z)6 A, (x, z) A}.
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The sequence of elimination graphs, G1, G2,’", G,_ , corresponding to the
ordering implicit in (2.4), is defined recursively by G1 Gxl and Gi (Gi-1)xi,
2 <__ <__ n 1, the corresponding sets zi of (2.7) being defined in terms of the
adjacency relation in Gi_ . Disregarding accidentally created zeros due to exact
cancellation, we see that G is the digraph of M2), Gi-1 is the digraph of M( as
the elimination proceeds, and r in Gi- is the set of fill in arcs at the ith step of
elimination. The digraph

is the graph of C of (2.2).
We will call M a perfect elimination matrix if there exists a permutation

matrix P such that B PMPr and

(2.9) bi =/= 0 and bki 0 =*" bkj O,

for <= < j < n and =< < k _<_ n. It is easy to see that (2.9) holds if and only
if (2.3) holds, and in this case the sets z of (2.8) have z . We then call G(M)
a perfect elimination digraph. We note that the digraph G’ of (2.8) is always a perfect
elimination digraph, hence studying such graphs provides information on the
numerical computational complexity of the elimination process.

Finally we mention that as a consequence of algebraic and complexity
considerations, it is appropriate to restrict attention to matrices M such that
G(M) is strongly connected (Bunch and Rose [1]). Figure 3b ( 4) indicates that
such a restriction arises combinatorially.

3. Paths and separators. Let G (X, A) be a finite directed graph (digraph)
with vertex set X and arc set A of ordered pairs of distinct vertices. An x, y path,
p, in G of length n- is a sequence of vertices p (x z,z2,..., zn y)
such that (zi, zi/ 1) A and zi 4: z for : j, except possibly for x y, and then
p is a cycle. A trivial path is a path containing only two distinct vertices, hence
both (x, y) and (x, y, x) are trivial. A minimal x, y path is an x, y path containing
no proper subpath, i.e., no proper x, y subsequence which is a path.

Let x, y X be not necessarily distinct. A subset S c X is an x, y separator
if x, y $ S and there exists a nontrivial minimal x, y path in G (implying (x, y) $ A),
but no such path exists in G(X S) (X S, A(X S)), A(X S) defined in
(2.6). A minimal x, y separator contains no proper subset which is an x, y separator.
A vertex z separates x, y if z is contained in a minimal x, y or y, x separator.

Consider the following example (Fig. 1).

z

FIG.
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The path (z, x, y, z) is a nontrivial minimal path, but (x, y, z, x) is not a minimal
path since it contains the trivial subpath (x, y, x). The set {x, y} is a z, z separator
and each of {x}, {y} are minimal z, z separators. There can be no y, y separator
since there is no nontrivial minimal path from y to y in G. The set {y} is a minimal
x, z separator, but the set {z} is not a y, x separator.

If p is a nontrivial minimal x, y path and S is any minimal x, y separator,
then some vertex u e S must be in p; otherwise p exists in G(X S). Also, for any
u e S there exists a nontrivial minimal x, y path p containing u but no other v e S;
otherwise S is not minimal, S- u being a separator. Hence, summarizing our
definitions, we have the following proposition.

PROPOSITION 1. Let S be a minimal x, y separator and u S. Every nontrivial
minimal x, y path contains at least one element of S, and at least one such path
contains u but no other v S.

Note that if p (x Z l,Z2,..., z, y) is any particular x, y path, there
may be other x, y paths on the vertex set {zi}, and there may be several minimal
x, y paths on subsets of {zi}. However, when p itself is a minimal x, y path we have
the next proposition.

PROPOSITION 2. If p (X Z l, 7-,2,’’’, 7, y) is a minimal x, y path, p is
the only x, y path on a subset of {zi}.

Proof. Suppose p’ (x zi,, zi2,"’, zi,, y), m <= n, is another path on a
subset of {z}. If zi,,_ z,_ 1, P could not be minimal, there being an arc (zj, z,),
j < n, in A. The result now follows by induction on n since q (x z l,z2,’",
z,_ 1) is a minimal x, z,_ path and the case n 2 is immediate.

PROPOSITION 3. A vertex z is contained in a nontrivial minimal x, y path
(z x, y) if and only if z is contained in some minimal x, y separator.

Proof. If z S, a minimal x, y separator, the result follows from Proposition 1.
Let z Po, a nontrivial minimal x, y path. If G(X z) contains no such x, y

path, z itself is a minimal x, y separator, so let P {p} be the set of such paths in
G(X- z). For any path p there must be a vertex vp such that viCpo by
Proposition 2. The set S {z, 13 v} certainly separates x and y in G. Let So - S
be a minimal x, y separator. Then z So, since z is the only vertex of Po in So.

Recall that we are not requiring x, y to be distinct. In the case x y we have
the following result.

COROLLARY. If y separates x, x, then there exists a z such that (i) y separates
x, z; (ii) z separates x, y; and (iii) z separates x, x.

Proof. If y separates x, x, then y is contained in some minimal x, x separator,
and, by Proposition 3, y must be contained in a nontrivial minimal path (cycle)
containing at least three vertices. Hence a z exists on the path and the result
follows by reapplying Proposition 3.

Let G (X, A) be a digraph and x X. We define

H G(X x),

H2 Gx, the x-elimination graph of (2.5),

H3 (X, A U rx), % as in (2.7).

We relate separators in H1, H2, H3 to those in G in the following proposition.
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PROPOSITION 4. If w separates y, z in any Hi, <__ <__ 3, then w separates
y, zinG.

Proof. If w separates y, z in any digraph G’, there exists (Proposition 3) a
nontrivial minimal y, z path p (y u 1, u2, w uk, , u, z). If G’ H 1,

the result is obvious.
Taking G’ H3, we note that there may be arcs (ui, ui + 1) of p which are not

in G since such arcs are in %. There may, however, be only one such arc, since if
(Ui, Ui+ 1) and (uj, uj+ 1), J > + 1, are both in Zc, then (ui, uj+ 1) A U z, con-
tradicting the minimality of p. So if p is not a path in G the sequence

p’ (b/1,b/2, bl i, X, bl + bin)

is a path in G, (ui, ui+ 1) being in
Path p’ is nontrivial in G since p is nontrivial in G’. Furthermore, no arc

(uj, ut), > j + 1, is in A since p is minimal and such an arc would be in G’. Finally,
no arcs (u, x), j < i, or (x, uk), k > + 1, are in A otherwise (u, ui+ 1) or (ui, uk)
are in G’, and p could not be minimal. Thus p’ is minimal and contains w, which
separates y, z in G (Proposition 3).

Noting that H2 H3(X X), we have from above that if w separates y, z
in G’ H3(X x), it separates y, z in H3 and hence in G.

We conclude this section with some remarks.
If (x, y) A, there are clearly no nontrivial minimal paths from x to y. If

(x, y) A and x, y are distinct, then any path from x to y contains a nontrivial
minimal subpath from x to y, and in this case, if S is a minimal x, y separator, then
no paths exist from x to y in G(X S). However, the digraph of Fig. 2 shows that
S may be a minimal x, x separator, and yet paths exist from x to x in G(X S).

FIG. 2. The set {z} is a minimal x, x separator, but trivial minimal paths exist in G(X z)

If G is undirected and we regard each edge xy as a pair of arcs (x, y) and (y, x),
there never exist any z which separate x, x (since there exist minimal trivial sub-
paths). Our notion of separation then reduces to the usual notion for undirected
graphs.

4. Perfect elimination digraphs. Recall that a digraph G (X, A) is a perfect
elimination digraph if and only if X can be ordered, X {x/}, such that the set

zi of (2.7) in the elimination graph Gi- has zi for __< =< n 1. We study
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the following conditions on G where vertices x, y are not necessarily distinct and
vertices u, v are not necessarily distinct.

Condition C1 (ordering, separation condition). There exists a bijection
a :X ,--, 1, 2, ..., IXI such that for all x, y X at least one of x, y, say x, is such
that a(x) < a(z) for all z X which separate x and y.

Condition C2 (antisymmetric separation condition). For all x, y X, at least
one of x, y, say x, is such that for all u, v which separate x, y, x does not separate

Condition C3 (chorded path condition). For all x y X at least one of x y
say x is such that for all u v which separate x y every set V of n > 2 vertices con-
tains a subset of n vertices such that any path from u to v through x whose
elements are exactly those of V has a subpath from u to v whose elements are
exactly those of W.

Condition C4 (chorded cycle condition). For any set V of n > 2 vertices there
exists a subset W of n vertices such that any cycle on V has a subcycle on .

Condition C3 includes the apparently weaker statement that every nontrivial
path from u to v through x has a subpath from u to v on all but one of its vertices.
Condition C3 says that a fixed vertex is avoided by some subpath of every path
on the vertex of any given path from u to v through x.

Consider momentarily G to be an undirected graph or equivalently a
directed graph such that (x y) A if and only if (y x) A. An undirected graph is
riangulaed if every cycle on n vertices (note there are two directed cycles) contains
a chord joining nonconsecutive vertices. Here a chord from p to q of the directed
cycle pair is an arc pair (p q) and (q p). As shown in Rose 4, a triangulated graph
is a perfect elimination graph and a perfect elimination graph is triangulated.
Such graphs are also characterized by the property that every minimal x y
separator is a clique (Rose 41). In this case we have the following theorem.

THEOREM 1. Le U (X A) be an undirected graph. Then he following are
equivalent.

(i) U is triangulated.
(ii) G satisfies C2.

(iii) G saris.ties C3.

Proof. Since (in this case) G has the perfect elimination property and we
shall show below generally, that this property implies C2 and C3 we need only
show that C2 implies (i) and C3 implies (i). We will show that every minimal x y
separator S is a clique. To prove this we could since G is undirected make use
of the x and y connected components of G(X S) but we prefer to proceed
somewhat differently.

Let distinct x y X and distinct u v S be chosen where S is a minimal x y
separator. Since G is undirected S is also a minimal y x separator and by Prop-
ositions and 3 there exist minimal paths

P [Wl Y, W2,’’’, Wk U,’’’, W

containing only u S, and

p [z x,z,..., Zl v,..., Zm Y3,

containing only v e S. Notice that no wi is adjacent or equal to a zj for < k and
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j < or for > k and j > 1, for then the sets {wi} and {zj} must contain another
vertex of S, contradicting the construction of P and Pc. Let

r min {i’i >= k and wi is adjacent to zj for j __< 1}.
Let

max {i’i <_ and w is adjacent to z}.
If u, v are not adjacent, then at least one of wr, zt x’ which separates u, v. Let

c min {i’i >= and z is adjacent to w for j __< k}.
Let

d max {i’i k and Zc is adjacent to wi}.
Again, at least one of we, zc is equal to y’, which separates u, v whenever u, v are
not adjacent. But u, v separate x’, y’ by construction, which would contradict
both C2 and C3 if u, v were not adjacent. Therefore S is a clique.

We now establish some general relations between conditions C1-C4.
THEOREM 2. G (X, A) is a perfect elimination digraph if and only if G

satisfies C1.
Proof. The "if" part of the proof proceeds by induction on [X[, the case

X[ being trivial. Let G satisfy C1 and w e X have a(w) 1. Note that w S,
S being any minimal x, y separator, otherwise a(x), e(y) < 1. Hence if (x, w) and
(w, y) are in A, then (x, y) e A, w not separating x, y.

The subgraph G(X w) satisfies C1, since if u separates x, y in G(X w), it
separates x, y in G (Proposition 4). Hence by induction, G(X w) is a perfect
elimination digraph and so is G.

Conversely, suppose G is a perfect elimination digraph, and let a assign to
each vertex its elimination order. Let z separate x and y; then z is contained in
some minimal x, y path p. Hence either a(x) < a(z) or a(y) < (z), otherwise p
could not be minimal.

THZORZM 3. The Jbllowing relations are valid for a digraph G (X, A)"
(i) C1 implies C3.

(ii) C3 implies C2.
(iii) C3 implies C4.

Proof. C1 implies C3. Let a be the ordering, and u and v separate x and y
withe(x) < a(y). Let V be the set of vertices in p (u z l, z2, "’, z x, ...,
z, v), a nontrivial u, v path, and let Zl p be such that a(Zl) <= a(z) for all z e p.
Note that z - u, v sincea(x) < a(u),a(v).

Let p’ be any path from u to v whose vertices are exactly those of V. Say

zt cannot separate z,,t_,, z,,,+, and W V- {zt} is the desired set.
C3 implies C2. Let u, v separate x, y. Then one of x, y, say x, is such that every

nontrivial u, v path through x has a proper subpath furthermore we may assume
this subpath does not contain x. Hence x does not separate u, v, being on no
minimal u, v path.

C3 implies C4. Let V be a set on n > 2 vertices. Suppose there exists u, x,
y e V such that u separates x, y, x, y not necessarily distinct. Now any cycle on V
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is a u, u path through both x, y and our conclusion is immediate from C3. Suppose
there exists a cycle on V, but no u, x, y in V are such that u separates x, y. At least
one path p exists from x to y for all x, y in V such that the vertices of p are all in
V. Then (x, y) A for all x, y, and a complete undirected subgraph exists on V;
the conclusion follows.

The digraph in Fig. 3a shows that C4 is not sufficient for the perfect elimina-
tion property. Note that u separates x and y, but both x and y separate u, u.
Figure 3b shows that neither C2 nor C3 is sufficient for the elimination property
if the digraph fails to be strongly connected.

We conclude with the following conjecture.
Conjecture. In a strongly connected digraph G (X, A) the perfect elimina-

tion condition, and conditions C1, C2 and C3 are equivalent.
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ANns/2 ALGORITHM FOR MAXIMUM MATCHINGS
IN BIPARTITE GRAPHS*

JOHN E. HOPCROFT" AND RICHARD M. KARP

Abstract. The present paper shows how to construct a maximum matching in a bipartite graph
with n vertices and m edges in a number of computation steps proportional to (m + n)x/.

Key words, algorithm, algorithmic analysis, bipartite graphs, computational complexity, graphs,
matching

1. Introduction. Suppose we are given a rectangular array in which each cell
is designated as "occupied" or "unoccupied". A set of cells is independent if no
two ofthe cells lie in the same row or column. Our object is to construct an indepen-
dent set of occupied cells having maximum cardinality.

In one interpretation, the rows of the array represent boys, and the columns
represent girls. Cell i,j is occupied if boy and girl j are compatible, and we wish
to match a maximum number of compatible couples.

An alternate statement ofthe problem is obtained by representing the rows and
columns of the array as the vertices of a bipartite graph. The vertices corresponding
to row and column j are joined by an edge if and only if cell i,j is occupied. We
then seek a maximum matching; i.e., a maximum number of edges, no two of which
meet at a common vertex.

This problem has a wide variety of applications ([3], 4], [5]). These include
the determination of chain decompositions in partially ordered sets, of coset
representatives in groups, of systems of distinct representatives, and of block-
triangular decompositions of sparse matrices. The problem also occurs as a
subroutine in the solution of the Hitchcock transportation problem, and in the
determination of whether one given tree is isomorphic to a subtree of another.

In view of this variety of applications, the computational complexity of the
problem of finding a maximum matching in a bipartite graph is of interest. The
best previous methods ([1], [3], [4], [5]) seem to require O(mn) steps, where m is
the number of edges, and n the number of vertices. The present method requires
only O((m + n)x/) steps.

We hope to extend our results to the nonbipartite case (cf. [2]). With this in
mind, all the results in 2 are derived for general graphs. The specialization to the
bipartite case occurs in 3.

2. Matchings anti augmenting paths. Let G (V, E) be a finite undirected
graph (without loops, multiple edges, or isolated vertices) having the vertex set V
and the edge set E. An edge incident with vertices v and w is written {v, w}. A set
M E is a matching if no vertex v e V is incident with more than one edge in M.
A matching of maximum cardinality is called a maximum matching.

We make the following definitions relative to a matching M. A vertex v isfree
if it is incident with no edge in M.
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A path (without repeated vertices)

P (v,, v2) (v2, V3), (U2k_ 1, U2k

is called an augmenting path if its endpoints v and Vzk are both free, and its edges
are alternatively in E M and in M; i.e.,

P CI M {(v2, v3), (v4, vs), (v6, vT), (V2k_ 2, U2k-1)}"
When no ambiguity is possible, wc let P denote the set ofedges in an augment-

ing path P as well as the sequence of edges which is the path itself. If S and T are
sets, then S q) Tdenotes the symmetric difference ofS and T, and S Tdenotes the
set of elements in S which are not in T. If S is a finite set, then ]S] denotes the car-
dinality of S.

LEMMA 1. IfM is a matching and P is an augmenting path relative to M, then
M P is a matching, and [M q) P] IM] + 1.

Figure denotes a graph G with a matching M and augmenting path P along
with the matching M @ P.

TI-IOREM 1. Let M and N be matchings. If ]M] r, IN] s and s > r, then
M q3 N contains at least s r vertex-disjoint augmenting paths relative to M.

Proof. Consider the graph G (V, M @ N) with vertex set V and edge set
M N. Since M and N are matchings, each vertex is indicent with at most one
edge from N M and at most one edge from M N; hence each (connected).
component of G is either

(i) an isolated vertex,
(ii) a cycle of even length, with edges alternatively in M N and in N M,

or
(iii) a path whose edges are alternatively in M N and in N M.

Let the components of G be C1, C2, "’’, Cg, where C ---(V/,Ei). Let 6(Ci)
]Ei f"l N] -]E f3 m]. Then 6(C)e {- 1, 0, 1}, and 6(C) 1 if and only if C

is an augmenting path relative to M.

Z ((Ci)"-IN MI -[M NI- [N[- [M[- s r.

Hence there are at least s r components Ci of G such that 6(C) 1. These
components are vertex-disjoint, and each is an augmenting path relative to M.

(o) M (b) P (c) M(P

FIG. 1. Graph G with (a) matching M, (b) augmenting path P and (c) new matching M P in dark
edges
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() N (b) M (c) M(N

FIG. 2. Matchings. N, M and M O) N in a graph G. Edges of G are not shown.

An example of matchings N and M in a graph G (V, E) along with the
graph (V, N @ M) is given in Fig. 2.

COROLLARY 1 (Berge). M is a maximum matching if and only if there is no
augmenting path relative to M.

COROLLARY 2. Let M be a matching. Suppose [M[ r, and suppose that the
cardinality ofa maximum matching is s, s > r. Then there exists an augmenting path
relative to M of length <= 2 [r/(s r) + 1.1

Proof. Let N be a maximum matching. Then M 03 N contains s r vertex-
disjoint (and hence edge-disjoint) augmenting paths relative to M. Altogether these
contain at most r edges from M, so one of them must contain at most Lr/(s r)J
edges from M, and hence at most 2[r/(s r)J + edges altogether.

Let M be a matching. The augmenting path P is called shortest relative to M
if P is of least cardinality among augmenting paths relative to M.

THEOREM 2. Let M be a matching, P a shortest augmenting path relative to
M, and P’ an augmenting path relative to M O) P. Then

IP’I >_-IPI + IP fq P’I.
Proof. Let N M 09 P 03 P’. Then N is a matching and INI --IMI / 2, so

M N contains two vertex-disjoint augmenting paths relative to M; call them
P1 and P:. Since M N P 03 P’, IP 03 P’I >= IPxl + IP=I. But IPxl _-> IPI and
IPI ->_ IPI, since P is a shortest augmenting path. So IP P’I >_- IPI / IP21 >_- 21PI,
and also we have the identity IP @ P’I --IPI + IP’I -IP FI P’I. Hence IP’I >-IPI

We envisage the following scheme of computation: starting with a matching
Mo , compute a sequence Mo, M1, M2, ".’, Mi, ".’, where Pi is a shortest
augmenting path relative to M, and M+ M 03 P.

The symbol Ix/denotes the greatest integer less than or equal to x, and Ix] denotes the least

integer greater than or equal to x.
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COROLLARY 3. P, P, + 11.
COROLLARY 4. For all and j such that IP, IPjI, P, and P are vertex-disjoint.
Proof. Suppose, for contradiction, that IP, IPI, < j, and Pi and Pi are

not vertex-disjoint. Then there exist k and such that k < < j, Pk and Pl are
not vertex-disjoint, and for each m, k < m < l, P,, is vertex-disjoint from Pk and PI.
Then PI is an augmenting path relative to Mk @ Pk, SO IPll >= IPI 4- IP f-I Pll. But
IPll IPl, so IP Pll O. Thus Pk and Pl have no edges in common. But if Pk and
Pl had a vertex v in common, they would have in common that edge incident with
v which is in Mk ( Pk. Hence Pk and P/are vertex-disjoint, and a contradiction is
obtained.

THEOREM 3. Let s be the cardinality of a maximum matching. The number of
distinct integers in the sequence

IP01, IPll, ..., IPI,

is less than or equal to 2 [xJ + 2.

Proof. Let r /s x//-l. Then IMI r and, by Corollary 2,

IPI-<_ 2Ls /J/(s Us /J)/ <_ 2Lw/J + 1.

Thus, for each < r, IPil is one of the L/J / positive odd integers less than or
equal to 2L/3 / 1. Also I/1, "", IPI contribute at most s- r
distinct integers, and the total number of distinct integers is less than or equal to

Lx/J / + Fx/ __< 2Lv/J + 2, and the proof is complete.
In view of Corollaries 3 and 4 and Theorem 3, the computation of the sequence

{M} breaks into at most 2Lx/-] + 2 phases, within each of which all the aug-
menting paths found are vertex-disjoint and of the same length. Since these paths
are vertex-disjoint, they are all augmenting paths relative to the matching with
which the phase is begun. This gives us an alternative way of describing the com-
putation of a maximum matching.

ALGORITHM A (Maximum matching algorithm).
StepO. M.
Step 1. Let l(M) be the length of a shortest augmenting path relative to M.

Find a maximal2 set of paths {Q, Q2,"", Q} with the properties
that
(a) for each i, Qi is an augmenting path relative to M and 1(21 -/(M);
(b) the Q are vertex-disjoint.
Halt if no such paths exist.

Step 2. M - M @ Q @ Q2 @ @ Qt; go to 1.
COROLLARY 5. If the cardinality ofa maximum matching is s, then Algorithm A

constructs a maximum matching within 2Lx/ + 2 executions of Step 1.
This way of describing the construction of a maximum matching suggests

that we should not regard successive augmentation steps as independent
computations, but should concentrate instead on the efficient implementation of
an entire phase (i.e., the execution of Step in Algorithm A). The next section
shows the advantage of this approach in the case where G is a bipartite graph.

A set is maximal with a given property if it has the property and is not properly contained in any
set that has the property.
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3. The bipartite case. The graph G (V, E) is bipartite if the set of vertices V
can be partitioned into two sets, X and Y, such that each edge of G joins a vertex in
X with a vertex in Y. An element of X will be called a boy, and an element of Y, a
girl. Let M be a matching in a bipartite graph G. We discuss the implementation
of Step of Algorithm A, in which a maximal vertex-disjoint set of shortest aug-
menting paths relative to M is found. First we assign directions to the edges of G
in such a way that augmenting paths relative to M become directed paths. This is
done by directing each edge in E M so that it runs from a girl to a boy, and each
edge in M so that it runs from a boy to a girl. The resulting directed graph is
G (V, E), where

E= {(y,x)l{x,y}E-M,xS,yeY} U {(x,y)l{x,y}eM,xS,yY}.
Next we extract a subgraph ( of (, with the property that the directed paths of (
running from a free girl to a free boy correspond one-to-one to the shortest aug-
menting paths in G relative to M. This is done as follows.

Let Lo be the set of free boys, and let

E {(u, v)l(u, v) e , v e Li, uC! Lo U L, U U Li}, =0,1,2,...,

L+I {b/I for some v, (u, v)e E}, =0,1,2,....

Let i* min {ilL f"l {free girls} }.
Then ( (P,/), where

Lo O L, U U Li._ U (gi, {free girls}),
E0 U E U U El,_ 2 U {(u, 1))Iv e Li,_ and u e {free girls}}.

An example of a graph ( is given in Fig. 3.
The following properties of ( are immediate.

(i) The vertices at even levels (Lo, L2, are boys, and those at odd levels
are girls.

(ii) If (u, v) e/, then for some i, u e L + and v e Li.
(iii) ( is acyclic.

(B)

Lo Eo L E L Ez L E L E L
(G) (B) (G) (B) (G)

FIG. 3. The graph used by Algorithm B. Dotted arrows indicate edges in current matching.
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(iv) The shortest augmenting paths relative toM are in one-to-one correspond-
ence with the paths of t which begin at a free girl and end at a free boy.
These paths are all of length i*.

For convenience, adjoin to G two new vertices, s (the source) and (the sink);
adjoin an edge from s to every free girl in ’, and an edge to from every free boy
in ’. Then we seek a maximal set of paths from s to t, subject to the restriction that
the paths are vertex-disjoint except for their endpoints.

We give an algorithm to find a maximal vertex-disjoint (except for endpoints)
set of paths from s to in an arbitrary acyclic directed graph H. The mechanism
for finding a maximal set of paths is a straightforward depth-first search. Each
edge processed either becomes part of the path being constructed from s to t, or
else there is no s-t path using that edge. In either case, the edge need never be
examined again and so is deleted.

We assume that the graph is represented as follows" for each vertex u, a
read-only linear list LIST(u) is given containing, in an arbitrary order, the vertices
v such that (u, v) is an edge. The algorithm also uses an auxiliary last-in first-out
list called STACK, which is initially empty, and a set B of vertices which is initially
the empty set. The following primitives occur in the algorithm.

Variables
top element of STACKTOP

FIRST

Operations
PUSH x
POP
DELETE
PRINT

push element x onto STACK
pop an element from STACK
delete the first element from LIST(TOP)
POP until STACK is empty and print the successive elements

Predicates
EMPTY STACK is empty
NULL LIST(TOP) is empty

ALGORITHM B (maximal set of s-t paths).
PUSH s

while STACK EMPTY do
begin
, while LIST(TOP)-- NULL do
begin
FIRST first element of LIST(TOP)
if FIRST B then
begin
PUSH FIRST
if TOP- then B - B (.J {TOP}

else PRINT, PUSH s

end
end
POP

end
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We make the following inductive assertions: every time instruction * is
executed,

(i) STACK contains the vertex sequence of a path from s to TOP;
(ii) for every vertex u 4: s, t, one of the following holds:

(a) u e B and u is on a s-t path already printed;
(b) u e B and u is on the stack;
(c) u e B and u does not occur in any s-t path which is disjoint from the

s-t paths already printed;
(d) u B, u does not occur on the stack or in any s-t path previously

printed, and for every v, u e LIST(v) if and only if (v, u) is an edge of
the graph H (i.e., u has not been DELETEd from any LIST).

The algorithm terminates when s is POPed from STACK after it is found that
LIST(s) is EMPTY. The inductive assertions given above then imply that upon
termination, no s-t path exists disjoint from those already PRINTed.

Each while block in the algorithm contains either a POP or a DELETE
operation. Since no vertex is POPed more than once, or DELETEd from any LIST
more than once, the running time of the algorithm is bounded by a constant times
(number of vertices + number of edges).

Hence the execution of Step 1 of Algorithm A requires at most O(m + n)
operations, and the execution of the entire maximum matching algorithm requires
at most O((m + n)x/)= O(?/5/2) steps.
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QUEUEING ANALYSIS OF A MULTIPROGRAMMED COMPUTER
SYSTEM HAVING A MULTILEVEL STORAGE HIERARCHY*

STEPHEN S. LAVENBERGt

Abstract. We formulate a class of closed queueing network models which can be used to represent
certain features of multiprogrammed computer systems having multilevel storage hierarchies. The
resources which comprise the system are described by a network of interconnected multiserver stages
where each stage can provide more than one type of service. The sequence of services required by a

program executing in the system is described by a finite Markov chain over the service types. This
description permits an explicit representation in the model of the data transfers which occur as deter-
mined by the data transfer rules and data paths in the hierarchy. The queueing discipline at each stage
is nonpreemptive priority among the types of service provided by the stage, and first-come first-served
within a service type.

We derive simple expressions relating the work rates for different stages and obtain simple upper
bounds on the work rates. These results are valid for general service time distributions. We then apply
a model in this class to the analysis of a multiprogrammed three level staging hierarchy. Under the
assumption that all service time distributions are exponential, we numerically investigate the effects
on system performance of different service priorities and of varying the program load parameters and
level of multiprogramming.

Key words, computer system modeling and analysis, multiprogrammed computers, paging,
queueing networks, storage hierarchies

1. Introduction. Consider a multiprogrammed computer system having a
multilevel storage hierarchy. Under multiprogramming, programs contend for the
services of the central processing unit (CPU) and the storage devices which com-
prise the hierarchy, and queueing delays result. In addition, CPU processing for
one program is overlapped with data transfer activities for other programs. System
performance measures such as CPU utilization and the average access times to
each level of the hierarchy depend on the program load and the system design in a
complicated way. Each set of programs and each system design requires a detailed
simulation in order to determine system performance accurately. Alternatively,
mathematical models suggest themselves. One approach to the mathematical
modeling of such a system is found in [9]. A mathematical model of such a system
might incorporate representations of the program load on the system, the storage
devices which comprise the hierarchy, the data transfers which occur as determined
by the data transfer rules and data paths in the hierarchy, the queueing which
occurs due to temporal contention for the CPU and storage devices, the dynamic
sharing of storage space among programs and the CPU overhead activities.

In this paper we formulate a class of queueing models which can be used to
represent certain features of multiprogrammed computer systems having multi-
level storage hierarchies. A model in this class consists of a Markov chain descrip-
tion of the sequence of services required by a single program executing in the
system as determined by the data transfer rules and data paths in the hierarchy,
augmented by a closed queueing network description of the resources (CPU and

* Received by the editors November 9, 1972, and in revised form May 8, 1973.- IBM Corporation, San Jose, California 95193.
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storage devices) which comprise the system. By choosing some of the Markov
chain transition probabilities equal to unity, we explicitly represent deterministic
sequences ofdata transfers which occur in the hierarchy. In order to keep the model
analytically tractable, it incorporates simple representations of the program load
and storage devices. CPU overhead activities and dynamic space sharing are not
represented. Numerical studies of such a model are of themselves interesting in
that they may provide insight into the effect of load and system parameters on
system performance. Such a model may also be used as a control variable in a
Monte Carlo simulation incorporating more accurate representations of program
load, storage devices and other system features such as CPU overhead. An appli-
cation of control variable techniques to queueing models of computer systems is
found in [3].

In the following section we formally describe the class ofqueueing models to be
considered and derive some general relationships which pertain to such models.
These models are related to ones independently introduced by Muntz and Baskett
[6]. In 3 we describe a specific system to be modeled, a multiprogrammed com-
puter system having a three level staging hierarchy [7], and present the resulting
queueing model of this system. In 4 the analysis of this model is discussed, and in
5 numerical results are presented and interpreted. In a final section we discuss

some extensions and limitations of this model.

2. A class of queueing models. Consider a network of S interconnected service
stages named by the integers 1, 2,.-., S and serving N customers. Customers
neither enter nor leave the network, but pass repeatedly through.the stages. For
each i, stage consists of a queue and mi identical parallel servers. There are
L >= S distinct types of service named by the integers 1, 2, ..., L provided by the
network, with service provided by stage s(/); s(/) is a function which maps the
integers 1, 2,..., L onto the integers 1, 2,..., S. Upon receiving service l, the
customer just served proceeds instantaneously to stage s(j) in order to receive
service j with probability pj _>_ 0, )=lpj 1. Thus, the sequence of services
required by a customer is described by a finite Markov chain over the service names
with transition matrix P (pj). This Markov chain is assumed to be irreducible.
Service times for service are independent identically distributed (i.i.d.) nonnegative
random variables, each having nonzero finite mean #. Service times corresponding
to different types of service are mutually independent. For each service stage, there
is a total priority ordering among the types of service provided by the stage. The
queueing discipline at each stage is nonpreemptive priority among the types of
service, and first-come first-served within a service type.

A related class of queueing models was independently introduced by Muntz
and Baskett [6]. In our terminology, they allow the Markov chain over the service
types to be decomposable into irreducible subchains, thereby allowing, for example,
different types of customers. In our formulation, all customers are statistically
identical. They consider four different types of service stages according to the
queueing discipline employed. The disciplines considered are first-come first-
served, processor sharing, no queueing and last-come first-served preemptive-
resume. They only allow different service time distributions for different service
types at stages of the types other than first-come first-served. This restriction does
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not permit a convenient service stage representation of the storage devices com-
prising a level of a storage hierarchy with different page sizes at different levels
(see 3). They obtain a relatively simple form for the equilibrium state probabilities
of their models when service time distributions are exponential at first-come
first-served stages and have rational Laplace-Stieltjes transforms elsewhere.
Unfortunately, this result does not extend to queueing models of storage hier-
archies as introduced in this paper.

We now obtain some preliminary results for our class of models. These results,
which hold under arbitrary service time distributional assumptions, are extensions
of results obtained by Chang and Lavenberg [2] for the special case of models for
which each stage provides only one type of service, i.e., L S.

We assume that for a model in our class there is zero service time rendered at
time zero. Thus, the initial state Vo of the model is specified by the initial service
required by each customer. We define the following quantities for each Vo, and
time > 0"

M(t, Vo) number of starts of service in [0, t];
N(t, Vo) number of completions of service in [0, t]
W/(t, Vo) amount of service time of service rendered in [0, t].

Note that

(1) m(t, Vo) m) <= N(t, Vo) <-_ Mr(t, Vo),

where m(t)is the number of servers at the stage which provides service 1.
Let rc (rtl,rt2,..., rtL) denote the unique probability vector satisfying

riP rt, where rtl > 0, N _<_ L, since P describes an irreducible Markov chain.
The following lemmas are proved in the Appendix.
LEMMA 1. For all Vo and 1,

(2) N(t, Vo) < with probability one (abbreviated P1)for all < ,
(3) lim N(t, Vo) P1,

t---

(4) lim M(t, Vo)/N(t, Vo) P1.

LEMMA 2. For all Vo and l,

(5) lim N(t, Vo)/Ni(t, Vo) rc/rci P1 for all i.

LEMMA 3. For all v0, the existence P1 of either of the limits, limt_, W/(t, Vo)/t,
limt_ Nt(t, Vo)/t, implies the existence P1 of the other. When these limits exist, the
following relationship holds"

(6) lim Wl(t, Vo)/t t lim N(t, Vo)/t.

We now assume that for each l, lim_, W/(t, Vo)/t exists with probability one
and is a degenerate random variable W, i.e., a constant, whose value is independent
of the initial state Vo. W/is called the work ratefor service I. It then follows from (5)
and (6) that for all and j,

(7) WI/ Wj 7ll/7jIA
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The work rate for a stage is defined as the sum of the work rates for all services
provided by the stage. Thus, letting Uq denote the work rate for stage q, we have

l:s(l)=q

Using (7), we see that for all stages q and r,

l:s(l) q / l:s(l)

Uq is the long-run time-average amount of service time of all types of service
rendered by stage q. Uq can also be interpreted as the long-run time-average number
of servers busy at stage q. If mq 1, then Uq is simply the utilization for stage q.
Substituting the inequality Ur _-< mr into (8) for each r yields the inequality

(9) U 2 Tf’lldl 2 Tf’ll’2l for all q,
l:s(l) q l:s(l) q*

where q* is chosen so that

(10) Z Tf’#ll max Z rCllalmq, l:s(l)=q* <_q<__S mq l:s(1)=q

Furthermore, equality holds in (9) if and only if all the servers at stage q* are
essentially always busy, i.e., U me. For any stage q not achieving the maximum
in (10), Uq/mq < Uq,/mq,. Let Uq(N) denote the dependence of U on N, the num-
ber of customers in the network. We conjecture that limN_ Uq,(N)---mq,.
This conjecture was proved for the special case of models for which L S [2],
but the method of proof does not extend to L > S.

We now define two terms which are useful in discussing some performance
aspects of our class of models. We will use them in interpreting numerical results
for the queueing model application presented in the next section.

DEFINITION 1. A stage is a limiting stage if it achieves the maximum in (10).
DEFINITION 2. Two stages q and r are in balance if

2 Tf’l[l’ll’-- Z llbll"mq l:s(l) q mr l:s(l)

Note that from the above, the work rate per server for any limiting stage is
greater than the work rate per server for any nonlimiting stage, and two stages
which are in balance have the same work rate per server.

3. Three-level staging hierarchy; description and resulting model. By a staging
hierarchy we mean a storage hierarchy in which data paths exist only between
adjacent levels of the hierarchy and in which larger quantities of information are
transferred between the lower levels of the hierarchy than between the higher
levels [7]. We now describe a three level staging hierarchy with a particular
physical implementation and set of data transfer rules. This hierarchy is shown in
Fig. 1. The top level of the hierarchy is physically implemented by a random access
memory, and the second and third levels are physically implemented by asyn-
chronous rotating storage facilities (for example, a drum storage facility at level 2
and a disk storage facility at level 3). The top two levels have limited capacities,
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Random Access
Memory

Rotating Storage
Facility

Level

Pages

Level 2
Blocks

Rotating Storage
Facility

Buffer

Level3
Blocks t

FIG. 1. Three level staging hierarchy

while the bottom level has sufficient capacity to contain all the information which
can be referenced by the CPU. The CPU can only process information residing in
the top level. Since levels 2 and 3 of the hierarchy operate asynchronously, in-
formation transfer between these levels occurs through an intermediate buffer.
This buffer is of sufficient capacity so that there is always space available for the
movement of information between levels 2 and 3.

The information which can be referenced by the CPU is logically divided into
equal-sized quantities called pages, and into larger equal-sized quantities called
blocks. A block consists of an integral number of pages. Pages are moved between
levels and 2 of the hierarchy and blocks between levels 2 and 3. When information
is referenced which resides in a level > of the hierarchy, but does not reside in
any higher level (i.e., any level j for which j < i), this information must be moved
up the hierarchy to the top level for processing. For example, if information
residing in level 3, but in no higher level, is referenced, the block containing this
information is moved to level 2, and then the page containing this information is
moved to level 1. If any of the higher levels are filled to capacity, information is
first chosen for replacement at these levels. The hierarchy is designed and managed
so that every page residing in the top level has its containing block in the second
level. One way of accomplishing this is described in [7]. If the page to be replaced
at the top level has been modified, the containing block must be updated. Thus,
the page chosen for replacement at the top level is written into its containing block
at the second level. This downward movement is assumed to occur even if the
page being replaced was not modified. (An extension of the model presented in
this section which addresses this point is discussed in 6.) Similarly, the block
chosen for replacement at the second level is always moved down to the third
level.
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TABLE
Description of services required by a single program executing in a

three level staging hierarchy

hit to level

hit to level 2

hit to level 3

service

process

page’level level 2
page" level 2 level
process

page:level level 2
block:level 2 buffer
block:buffer level 3
block:level buffer
block:buffer level 2
page:level 2 level
process

service type

CPU

level 2
level 2
CPU

level 2
level 2
level 3
level
level 2
level 2
CPU

In Table 1, we describe the services required by a single program executing in
a computer system having the staging hierarchy just described. On each CPU
reference, one of the three events in column 1 can occur, where a hit to level is a
reference to information residing in level but not residing in any higher level.
Each event results in a sequence of services being performed. It is assumed that the
top two levels of the hierarchy are filled to capacity and that when information is
to be replaced at levels 1 or 2, it is first moved down the hierarchy. The services
are performed sequentially in the order shown in column 2. We distinguish L 9
types of service in column 2 and these are named by the integers to 9 in column 3.
We model the sequence of services r,equired by a single program by a Markov
chain over the integers 1 to 9 with transition probabilities,

P23 P31 P4s P56 P67 P78 P89 P91 1,

(11) P12 -’0,

All other transition probabilities are zero. The deterministic sequence of services
resulting from each event is represented explicitly. Note that we do not distinguish
successive services of type 1, i.e., pl 0. Thus z is the conditional probability that
a fault out of level (i.e., a hit to level 2 or 3) is a hit to level 2. The quantity could
be estimated from the address trace of a given program by dividing the number of
hits to level 2 by the number of faults out of level 1 [7]. It is convenient to represent
pictorially the above Markov chain with the service transition diagram shown in
Fig. 2.

Under multiprogramming, with a fixed number N of programs executing in
the system, we assume that the storage capacity at each level of the hierarchy is
statically allocated among the N programs and that all replacement algorithms
operate locally. All programs have identical page sizes and identical block sizes.
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FIG. 2. Service transition diagram for a single program

A given program has sole access to the CPU until it references information not
contained in level 1, in which case the next program ready for processing is given
access to the CPU. A program is ready for processing when its information transfer
activities have been completed. These programs require service from the resources
which comprise the system giving rise to contention for these resources. The only
resources explicitly modeled are the CPU, level 2 and level 3. The random access
memory (level 1) and the buffer are assumed to be fast enough to handle the load
imposed on them without significant congestion. The CPU is modeled as a single
server stage while levels 2 and 3 are modeled as multiserver stages to reflect the
parallelism in such storage ftcilities (see Fig. 3). These resources form a network of
S 3 interconnected stages serving N customers (programs). The possible paths
between these stages are indicated in Fig. 4. The sequence of services required by
each customer is modeled by the Markov chain in (11). Service is provided by
the CPU, services 2, 3, 4, 5, 8 and 9 by level 2, and services 6 and 7 by level 3 as
indicated in column 4 of Table 1. Thus, the function s(l) of 2 is given by

1, I=1,

s(1)= 2, 1=2,3,4,5,8,9,

3, =6,7.

Service times of a given type are assumed to be i.i.d, exponential random variables,
with mean/l for service type l, and service times of different types are mutually
independent. All programs are statistically identical. A CPU service time (type
service time) is the duration of an interval during which a given program references
and processes information residing in level 1 of the hierarchy./1 --/c,t could be
obtained from the address trace of a given program by multiplying the average
number of references between faults out of level 1 by the average CPU processing
time per address reference. A type service time, 2, 3, 4 or 9, is the time to read
or write a page from or to level 2 of the hierarchy, and we assume

/29 /22p. A type 5 or 8 service time is the time to read or write a block from or
to level 2, and we assume/5 =/8 =/2B, where/2B > #2P. A type 6 or 7 service
time is the time to read or write a block from or to level 3 and we assume 6 7

#3B, where ]23B > 2B"
The queueing discipline at each stage of the model is of the nonpreemptive

priority type described in 2. Since the CPU renders only one type of service, the
service discipline at the CPU is first-come first-served. The following priority
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Stage CPU
m =1

Stage 2- Level 2

m2
Stage 3 Level 3

m3

FIG. 3. Service stages which comprise the queueing network

orderings among the services provided by stage 2 will be considered, where > j
means service has nonpreemptive priority over service j:

(i) 3 >2>9>8 > 5>4;
(ii) 2> 3 >4> 5 >8 >9;

(iii) 9 >8 > 5>4>3 >2;
(iv) 4> 5 >8 >9 >2>3.

In disciplines (i) and (ii), services 2 and 3 due to hits to level 2 are given priority
over services 4, 5, 8 and 9 due to hits to level 3. In addition, in (i), the order of ser-
vices 2 and 3 and of services 4, 5, 8 and 9 corresponds to giving highest priority to
those services for which the fewest services remain until the program is ready for
processing by the CPU. In (ii), highest priority is given to those services for which
the most services remain. In (iii) and (iv), services due to hits to level 3 are given
priority over services due to hits to level 2. In (iii), the order of services 4, 5, 8 and 9
and of services 2 and 3 is fewest remaining services, and (iv), most remaining
services. The priority orderings considered for stage 3 are

(i) 7 > 6,
(ii) 6 > 7,

corresponding to fewest remaining services and most remaining services, re-
spectively.

We summarize the model parameters in Table 2.

4. Analysis of the model. All service time distributions for the model in 3
were assumed to be exponential. Thus, the analysis of this model involves com-
puting the steady state probabilities of a finite state Markov process and using
these to compute the response variables of interest. The state of the process at
any time is determined by the service required by each program at that time and the

FIG. 4. Possible paths in the queueing network
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TABLE 2
Parameters for model of multiprogrammed three level staging hierarchy

S

m2, m3
L
s()

parameter

3

value

s(l), l= 2,3,4,5,8,9
s(l), 6, 7

P23, P31, P45, P56, P67, P78, P89, P91

/2, /23, ]A4, ]-/9

Ps, P8
/16, /27
Stage 2 priorities

Stage 3 priorities

2
3

CPU
2P
2B
ftaB

(i) 3> 2>9>8> 5>4
(ii) 2> 3>4> 5>8>9
(iii) 9> 8 > 5 >4> 3 >2
(iv) 4> 5>8>9> 2> 3
(i) 7 > 6
(ii) 6 > 7

order in which each stage will provide these services as determined by the queueing
disciplines. Formally, the state of the process at any time can be represented as an
18-tuple (r ,r2, r9, wl, W2, W9) where r is the number of programs re-
ceiving service and w is the number of the program waiting in queue to receive
service 1. Clearly,

L

(12) (r + Wl)-" N.
I=1

Not all 18-tuples of nonnegative integers satisfying (12) are possible states.
Additional constraints must be satisfied; for example, r6 + rv =< m, and w6 + w7

>0onlyifr6 + r m.
It can be shown that for the queueing disciplines we consider, the state corre-

sponding to all programs at the CPU, i.e., the state with r 1, w N and
rt wt 0 for all - 1, is reachable from any other state. Thus, the set of states
which communicate with this state comprise the single ergodic class of the process.
All other states are transient. The steady state probabilities exist and are indepen-
dent of the initial state.

The response variables we consider are the work rates for the stages, the
average access times to levels 2 and 3 and the overall average access time. The
work rate U for stage q was defined in 2. The work rates exist for our model and
work rates for different stages are related by (8). Using parameter values for the
model given in Table 2, it follows from (8) that

(13)
Uz/UI [2/2p + 2(1 -z)#2B]/#cPu,

U3/Ua 2(1 z)p3B/Pcpv.
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We will present numerical values only for U1, the CPU work rate. Values for U2

and U3 can be obtained from (13). It follows from (9) and (10) that

/ 2#2e+2(1 --z)/’t2B 2(1 --z)#3n)(14) U1 _-- U1 ]/cPu max #CPU,
m2 rrt3

Stage 1,2 or 3 is a limiting stage if#cPu, V2#zP + 2(1 )#2B]/m2 or 2(1 )#3B/m3
respectively achieves the maximum in the denominator on the right-hand side of
(14). Suppose stage q* is a limiting stage, where q* 2 or 3. In 2 we conjectured
that lim N-.o UI(N) U1. For infinite N, stage q* is a bottleneck relative to the
CPU work rate in the following sense" if we speed up stage q* by decreasing the
mean service times at the stage or by increasing the number of servers at the stage,
then the CPU work rate increases. If q* 2 and we speed up stage 3, or if q* 3
and we speed up stage 2, then the CPU work rate does not change.

The access time to a level is the time necessary to complete all data transfers
resulting from a hit to that level. In the model, this is the time elapsed between
the moment a program leaves the CPU stage due to a hit to that level and the

k denote the kth access time to level i.moment it next enters the CPU stage. Let ai
Conditions hold which are sufficient for Little’s formula [4] to be valid. Thus,
lim,. (l/n) ,, =1 ai exists with probability one and is a constant A, the average
access time to level i, given by

A Qi/2i, i= 2, 3,

where Q is the average number of programs requiring services 2 or 3 if 2,
services 4, 5, 6, 7, 8 or 9 if 3, and 2 is the rate at which hits to level occur, i.e.,

lim Nl(t). z, 2,
2

t- [1 -, i=3,

where N(t) is the number of CPU completions in [0, t]. (We have omitted any
notational dependence on the initial state since, in the limit, this dependence
disappears.) Using (6), we see

U1 , i=2,
2=

#cPu z, 3.

The overall access time to the hierarchy is the time necessary to complete all
data transfers resulting from a fault out of level (memory), i.e., the time elapsed
between the moment a program leaves the CPU stage and the moment it next
enters the CPU stage. The overall average access time, denoted by A, is given by

A zA2 -+- (1 a)A3.

A PL/I program was written which computed the steady state probabilities
and used these to compute the response variables. Numerical methods similar to
those in [8] were used. For example, the transition intensity matrix of the process
was stored in sparse form, and an iterative technique was used to compute the
steady state probabilities. In addition, the transient states were first determined from
the structure of the process, and the initial iterate was chosen with all components
corresponding to transient states set equal to zero. At successive iterations, only
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TABLE 3
Cardinality qf the state space

m2

2

2

2 2

cardinality

61
1,065
8,755

60
1,023
8,310

46
1,065

11,569

45
1,038

11,019

those components corresponding to ergodic states were updated, thus avoiding
wasteful multiplications by zero. This was found to increase the speed ofcomputation
by up to a factor of two. This program was run on an IBM 360/195. The increase
in cardinality of the state space as N increases (see Table 3) imposed a limit on the
maximum level of multiprogramming for which it was reasonable to obtain
numerical results. Both the amount of storage required and the CPU time required
increase as N increases. For N 6, m2 1 and m3 2, a typical run required
300,000 bytes of storage and 2.5 minutes of CPU time.

5. Numerical results. We present some numerical results in Tables 4-8. In
Table 4, we demonstrate the effects of different queueing disciplines on system
performance. The numbers in parentheses refer to the priority orderings in Table 2.
The orderings corresponding to fewest remaining services ((i) and (iii) at stage 2,
(i) at stage 3) result in higher CPU work rate and shorter overall average access
time than the orderings corresponding to most remaining services ((ii) and (iv) at
stage 2, (ii) at stage 3). The CPU work rate and overall average access time are
not significantly affected whether or not services due to hits to level 2 have priority
at stage 2 over services due to hits to level 3 (compare (i) with (iii) and (ii) with (iv)
at stage 2). However, by giving priority to services due to hits to level 2 (respectively,
3), the average access time to level 2 (respectively, 3) decreases, and the average
access time to level 3 (respectively, 2) increases. In what follows, we consider only
priority ordering (i) at stage 2 and (i) at stage 3.

In Tables 5-8 we fix parameters mz, m3, 2e, fl2B and #3B associated with
levels 2 and 3 of the hierarchy and vary the program load parameters/tcpv and 0

and the level of multiprogramming N. In these tables, 1 is the upper bound on
CPU work rate defined in (14).

Stage 1,2 or 3 is a limiting stage for these parameter values if/cpv, 1 + 6(1 0),
or 36(1 ), respectively, achieves the maximum of these three expressions. In
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Tables 5 and 6, stage 2 is the limiting stage for .99, stages 2 and 3 are in balance
and are limiting stages for .967, and stage 3 is the limiting stage for .95 and

.9. In Table 7, stage 1 is the limiting stage for .99, all stages are in balance
for .967, and stage 3 is the limiting stage for .95 and .9. In Table 8,
stage 1 is the limiting stage for .99, stages and 3 are in balance for .958,
and stage 3 is the limiting stage for .95 and .9. We make several obser-
vations from these numerical results.

U1 increases as N increases. When the stages are far out of balance, e.g.,
.99 or .9 in Table 7, all the servers at the limiting stage rapidly become

essentially always busy as N increases, so that U1 rapidly approaches U. When
the stages are close to or in balance, e.g., .967 in Table 7, U approaches U1
more slowly. This is shown in Fig. 5. As decreases, U1 remains equal to unity as
long as stage is the limiting stage and decreases when stage 2 or 3 becomes the
limiting stage. This behavior is less pronounced for finite values of N as shown in
Fig. 6. U1 increases as/cPv increases when stage 2 or 3 is the limiting stage and
remains equal to unity when stage is the limiting stage. This behavior is less
pronounced for finite values of N, as shown in Fig. 7.

m 1, m

stage stage

priorities priorities

TdLE 4
CPU work rate and average access times
2, .99,/tcev 1.0, ,uze .5, #2B 3.0, //3B 36.0

N=I

(i) (i) .360
(ii) (ii) .360

(iii) (i) .360
(iv) (ii) .360

(i)
(ii)
(iii)
(iv)

(i)
(ii)
(i)
(ii)

(i)
(ii)
(i)
(ii)

(i)
(ii)
(i)
(ii)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)
(iv)

.575

.562

.575

.562

.695

.668

.693

.666

U1

.764

.728

.761

.724

.808

.767

.802

.761

.837

.794

.830

.787

A2

1.00
1.00
1.00
1.00

1.35
1.39
1.37
1.40

1.77
1.85
1.81
1.89

2.21
2.33
2.31
2.41

2.67
2.81
2.84
2.95

3.12
3.29
3.39
3.49

79.0
79.0
79.0
79.0

1.78
1.78
1.78
1.78

81.4
81.5
80.4
80.5

2.15
2.19
2.16
2.20

A

86.7
86.1
82.7
82.8

94.2
91.7
84.7
84.9

2.62
2.70
2.62
2.70

3.13
3.23
3.13
3.24

104.
98.
86.4
86.6

3.68
3.76
3.68
3.78

116.
105.
87.7
88.1

4.25
4.31
4.24
4.33



244 STEPHEN S. LAVENBERG

TABLE 5
CPU work rate and average access times

.7, m 1, m 2,//2P .5, 2B 3.0, 3B 36.0, 3 > 2 > 9 > 8 > 5 > 4, 7 > 6

N=I

.456 .549

.296 .380

.233 .299

.142 .174

.99 .282

.967 .163

.95 .125

.90 .074

.99

.967

.95

.90

.99

.967

.95

.90

1.00
1.00
1.00
1.00

79.0
79.0
79.0
79.0

1.78
3.61
4.90
8.80

1.40
1.28
1.24
1.20

81.6
81.3
80.8
80.2

1.92
1.61
1.51
1.36

.99

.967

.95

.90

88.0
92.8
94.8

100.

2.21 2.79
3.93 4.62
5.23 6.17
9.09 11.3

/12

a

.599

.436

.340

.189

2.49
1.94
1.74
1.46

102.
108.
114.
127.

3.48
5.43
7.33
14.0

.627

.471

.361

.194

3.08
2.25
1.91
1.51

123.
127.
139.
158.

4.28
6.36
8.74

17.2

.642

.492

.372

.194

3.62
2.50
2.02
1.53

156.
152.
167.
192.

5.15
7.43

10.3
20.6

.660

.583

.389

.194

1,0

oOO o 0.99

0.967

[/ vv_______v_ ,=o.9

0.5

ol
2 3 4 5 6

FIG. 5. U vs. N for Table 7
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TABLE 6
CPU work rate and average access times

Pcvu 1.0, m 1, m 2, P2P .5, P2B 3.0, P3B 36.0, 3 > 2 > 9 > 8 > 5 > 4, 7 > 6

.99 .360

.967 .217

.95 .170

.90 .102

.99

.967

.95

.90

.99

.967

.95

.90

.99

.967

.95

.90

N-I

1.00
1.00
1.00
1.00

79.0
79.0
79.0
79.0

.575

.392

.314

.196

1.35
1.26
1.23
1.19

81.4
81.0
80.8
80.1

.695

.505

.406

.244

1.77
1.56
1.48
1.36

86.7
90.7
93.0
98.8

1.78 2.15 2.62
3.61 3.89 4.51
4.90 5.21 6.06
8.80 9.09 11.1

U

A2

A3

.764

.578

.467

.268

2.21
1.86
1.72
1.48

94.2
105.
109.
124.

3.13
5.25
7.08
13.7

.8O8

.630

.502

.277

2.67
2.16
1.91
1.54

104.
120.
130.
154.

3.68
6.05
8.33
16.8

.837

.668

.524

.278

3.12
2.44
2.06
1.56

116.
137.
155.
187.

4.25
6.88
9.72

20.1

.943

.833
,556

.278

0,5

0
1.o

-V N=I

0.95 0.9
FIG. 6. U vs. for Table 7
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TABLE 7
CPU work rate and average access times

/tcpU 1.2, m2 1, m 2,/tzt, .5, 2B 3.0, #3B 36.0, 3 > 2 > 9 > 8 > 5 > 4, 7 > 6

.99

.967

.95

.90

.99

.967

.95

.90

.99

.967

.95

.90

.99

.967

.95

.90

N=I

.403

.250

.196

.120

1.00
1.00
1.00
1.00

79.0
79.0
79.0
79.0

1.78
3.61
4.90
8.80

.636

.448

.362

.230

1.33
1.25
1.23
1.19

81.4
80.7
80.8
80.1

.763

.575

.469

.288

1.69
1.53
1.47
1.36

85.8
89.6
92.1
97.9

U1

A

.836

.658

.541

.319

2.05
1.81
1.69
1.48

91.5
102.
106.
122.

2.13 2.53 2.94
3.87 4.44 5.10
5.20 6.00 6.93
9.08 11.0 13.5

.88O

.715

.586

.331

2.39
2.08
1.89
1.55

97.7
116.
125.
151.

3.34
5.82
8.06
16.5

.910

.757

.616

.333

2.72
2.33
2.05
1.58

104.
131.
147.
184.

3.74
6.57
9.32
19.8

1,

1.
.667
.333

0.5

o
0.5

/0 ,i,
N 6

1 / ,Jjll N 3

1.0 1.5

FIG. 7. U1 vs. PcPu for Tables 5-8 and 0.99
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TABLE 8
CPU work rate and average access times

]cPu 1.5, m 1, m 2, P2P .5, P2B 3.0, P3B 36.0, 3 > 2 > 9 > 8 > 5 > 4, 7 > 6

.99 .457

.958 .261

.95 .234

.90 .146

.99

.958

.95

.90

.99

.958

.95

.90

.99

.958

.95

.90

N=I

l.O0
1.O0
1.00
1.00

79.0
79.0
79.0
79.0

1.78
4.28
4.90
8.80

.707

.466

.426

.278

1.29
123
1,21

119

81.4
80.7
80.8
80.1

.835

.599

.550

.351

1.59
1.46
1.44
1.36

84.9
90.0
91.3
96.7

2.09 2.42
4.56 5.18
5.19 5.93
9.08 10.9

U1

A2

A3

.902 .940

.685 .745

.635 .693

.392 .410

1.85
1.69
1.65
1.49

88.9
102.
103.
118.

2.07
1.89
1.84
1.56

92.5
116.
118.
146.

2.72 2.98
5.92 6.69
6.74 7.67
13.2 16.1

.962

.789

.732

.417

2.25
2.07
2.00
1.60

95.7
131.
136.
178.

3.19
7.47
8.70
19.2

1.
1.
.833
.417

When stage 2 or 3 is the limiting stage, A increases more rapidly as N increases
than when stage is the limiting stage. This is shown in Fig. 8. Finally, the increase
of A with decreasing e is more pronounced for larger values of N (see Fig. 9), and
the decrease of A with increasing tcpu is more pronounced for larger values of N
(see Fig. 10).

6. Extensions and limitations of the model. The model in 3 can be extended
to incorporate a simple representation of CPU overhead. We introduce a new
service type 1’ corresponding to CPU overhead activities with s(l’) 1. The service
transition diagram describing the sequence of services required by a single program
is shown in Fig. 11 (compare with Fig. 2). The priority ordering among CPU
services is 1’> 1.

In developing the model in 3, we assumed that when a page or block is to be
replaced, it is always moved down the hierarchy to the next level. However, in
managing the hierarchy, a bit associated with the page or block could be examined
to determine if the page or block had been modified. The page or block is moved
down to the next level only if it had been modified. This can be represented in the
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20

J-

0.9

0.95

1 , 0.967

, O__..__._.._ O 0.99

2 3 4 5 6

FIG. 8. A vs. N for Table 7

20

10

1.0

,L N=6

N=3

N=I

0.95 0.9

FIG. 9. A vs. for Table 7
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6o0

3.5

N=6

N=3

’N=I

1.0

FIG. 10. A vs./tc,U .for Tables 5-8 and o 0.99

\q),

FIo. 11. Service transition diagram incorporating CPU overhead

FIG. 12. Service transition diagram incorporating the effect of not always updating
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service transition diagram of Fig. 12, where the arrows indicate transitions of non-
zero probability, and suitable probabilities are chosen for these transitions.

Both the extensions just discussed increase the computational complexity of
the model, the former by increasing the cardinality of the state space and the latter
by destroying some of the sparseness in the transition intensity matrix of the
Markov process. Note, however, that by using (9) and (10) we could still obtain a
simple upper bound on the CPU work rate in terms of the model parameters,
and we could identify the limiting stages in terms of these parameters.

Two principal limitations of the model are the representations of the program
load and of the rotating storage facilities. Recent statistical analyses of address
traces suggest that successive CPU service times for a single program might be
more adequately modeled as a semi-Markov process than as i.i.d, random variables
[5]. In addition, the empirical CPU service time distributions obtained from these
traces are more skewed than the exponential distribution. There is no evidence to
suggest that a sequence of Bernoulli trials determines whether successive faults
out of level are hits to level 2 or hits to level 3. The rotating storage facilities
comprising a level of the hierarchy form a complicated queueing structure [1]
which we approximate by a multiserver exponential stage in the model. More
accurate representations in either of these two areas pose extreme analytic and/or
computational difficulties. This suggests Monte Carlo simulation of models
incorporating more accurate representations ofprogram load and storage facilities.
The simpler models may then be used in a control variable method of improving
simulation efficiency [3].

Appendix. Consider a model in our class as it evolves in time. Note that the
kth service of type to start is not necessarily the kth service of type to complete,
since we consider multiserver stages. Let T denote duration of the kth service of
type to start. The service time sequence for service 1, { T" k => }, is a sequence of
i.i.d, nonnegative random variables, each with mean

We define integer-valued director random variables , where =j,
< j =< L, if and only if at the kth service completion of type 1, the customer

just served next requires service j. The sequence {qt’k >= 1}, called the director
sequence for service 1, is a sequence of i.i.d, random variables with Prob {Ol J}

pj for all k >= 1. The L service time sequences and the L director sequences form
a collection of 2L mutually independent sequences.

The service time sequence for service is composed ofms() disjoint subsequences,
where T"j :j => is the subsequence of service service times provided by the rth
server at stage s(l), <__ r <= ms(l). It is straightforward to show that T :j >__ 1} is
a sequence of i.i.d, random variables, each distributed according to the service
time distribution for service 1. Note that the kth service of type to start at server r
of stage s(l) is also the kth service of type to complete at this server. We also define
random variables 4)/j by

if 0 J,

0 if - j.

The sequence {4j" k >_ 1} is a sequence of i.i.d, binary-valued random variables
with Prob {4j ptj. We now prove Lemmas 1-3.
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Proof ofLemma 1. For each l,

Prob {Nl(t, Vo) >= Kms()} < Prob server r completes at least K services in
(r=

ms(1)

Prob {server r completes at least K services in [0,
r=l

ms()

__< Prob {T71+ Tf2+ + T’__< t},
r=l

which tends to zero in the limit as K oo from the strong law of large numbers,
since # > 0. Thus (2) holds.

Let M(t, Vo)= f_M(t, Vo). We now show lim, M(t, vo)= Pl. For
all t,

L M(t,vo) L

E E T E (t,Vo)t.
/=1 k=l /=1

Assume that for some K > O,

Prob {lim M(t, Vo) < K) 8 > O.

But limt M(t, Vo) < K implies: :1 W for all t, so that

Prob T= .
I= k=

This is impossible, since the service times are finite-valued P1. Thus, lim M(t, Vo)
=P1.

It follows that for some l, limM(t, vo)= P1, and from (1),
lim. N(t, Vo) P1. We now show this holds for allj I. Since the Markov
chain over 1, 2,..., L is irreducible, there exists a finite sequence io, i,...,
such that o l, i j and p,_i, > 0, n I. Clearly,

Nio(t,vo)

k=l

where Prob {ao, 1} Pio > 0. Thus, lim No(t, Vo) Pl implies
lim N(t, Vo)= P1. Continuing in this way, we see that lim N,(t, Vo)

P1, which completes the proof of (3). Equation (4) follows from (3) and (1).
Proof ofLemma 2. For each j,

+ b(t),
/=1 k=l

where b(t) is uniformly bounded for all t. Thus

Nj(tVo), Nl(tvo)z ,o, +
Ni(tb(t)vo)N(t, Vo) = N(t, Nl(i Vo) =
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(from Lemma 1, for each l, N(t, Vo) < P1 for finite, and N(t, Vo) > 0 for
sufficiently large). Using (3) and the strong law of large numbers, we see that

Nj(t Vo) L Nt(t Vo)
lim E Plj lim -’
t Ni(t 1;o) l=l t--* Ni(t, Vo)"

Thus

lim Nj(t, Vo)/Ni(t, Vo) constant rj,

and setting j i, we conclude that 1/ti constant. This completes the proof of
Lemma 2.

Proof ofLemma 3. Let N,r(t, Vo) be the number of completions of service by
the rth server at stage s(l) in [0, t]. Then,

ms(1)

Nt,,(t, Vo) Nt(t, Vo).
r--1

Clearly, for each l,

Nl(t Vo m_,,) Nl,r(t i;0) u,,.,,o) Wl(t Vo)
[ /.Lr=l /(t V- Nl,r(t Vo) k=l

Nl(t, Vo) Ml(t, Vo) M(t,o)

Nl(t, Vo) Ml(t, Vo) k=

Using (3), (4) and the strong law of large numbers, we conclude that limt_o
Wl(t, Vo)/t exists P1 if and only if lim,_ Nl(t, Vo)/t exists P1, in which case (6)
holds, and the proof is complete.
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CONTINUOUS GROUP AVERAGING AND PATTERN
CLASSIFICATION PROBLEMS*

J. C. DUNN"

Abstract. The relationship between pattern classification problems and the elementary theory
of group invariants is considered. A general procedure for obtaining quantitative invariants by averag-
ing functionals over the manifold of a continuous group is examined in some detail, and then applied
to the classification of plane figures. Specifically, the Fourier transform of a plane figure is averaged
over the one-parameter continuous group of dilatations to obtain a pair of interesting scale invariant
transforms which tend to pick out corners and flat spots in the figure’s boundary.

Key words, patterns, features, group invariants, averaging, plane figure, dilatation, Fourier
transform, corners, sides

1. Introduction. The classical theory of groups contains the following elemen-
tary but far-reaching principle for constructing quantitative invariants under a
transformation group, N to each object, s, in the domain of c, assign the average,
f*(s), of the values assumed by an arbitrary functional on all the images of s
under the transformations in a. If f# is a finite group and if "average" is interpreted
in the ordinary way, then the invariance under a of the averaged functional, f*,
is an immediate consequence of the group axioms and the permutation symmetry
of finite sums. However, even if a is a nondenumerably infinite group, it is fre-
quently still possible to extend the averaging principle through the construction
of integrals taken with respect to a certain class of measures on the manifold of c.
According to Weyl [1], an extension of this kind was first formulated by Hurwitz
in 1897, and plays a part in the classical theory of compact Lie groups.

In recent years, the group averaging principle has appeared in the literature
on pattern classification problems, which is not surprising if one considers (a)
that "classifying a pattern" generally means detecting an equivalence, relative to
a specified group of transformations, between the pattern in question and some
member of a set of "canonical" patterns (i.e., representatives from the group-
induced equivalence classes); and (b) that this kind of equivalence is generally
established by computing and comparing a sufficient number of transformation-
invariant properties or "features" (i.e., group invariants). In 1947, Pitts and
McCulloch [2] applied finite group averaging to the design of artificial neuronal
networks mimicking the function, and apparently to some extent, the structure of
auditory and visual systems in the human brain. More recently, the same finite
group averaging principle appears again in a book on perceptrons by Minsky
and Pappert [3]. So far, however, little or no use has been made of continuous
group averaging within the context of pattern classification. This paper indicates
the possibilities in such an application by averaging Fourier transforms of plane

* Received by the editors April 18, 1972, and in revised form April 3, 1973.

f Department of Theoretical and Applied Mathematics, Cornell University, Ithaca, New York
14850.

I.e., in the common domain of the transformations in ,.
253
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figures over a one-parameter continuous group of dilatations (i.e., homothetic
scale changes) to produce a pair of interesting scale invariant transforms.

It turns out that exact computations of the scale-averaged Fourier transforms
are feasible on the class ofpolygonal figures, and the results show that the transform
values are different from zero only if (a) the transform argument, co, is orthogonal
to a side of the polygon, or (b), co is orthogonal to a line passing through the
centroid of the polygon and one of its vertices. This behavior is explained in terms
of the averaged transform’s selective response to chordal width irregularities
produced by corners and sides. Unfortunately, the method ofcomputation employed
for polygons does not carry over in a straightforward manner to figures with
curved boundaries, and while certain pieces of evidence suggest that a selectivity
for corners and flat spots probably occurs in the averaged Fourier transform of
a general figure, the issue is not completely resolved here.

The results of this paper are presented without an evaluation of their tech-
nological or biological significance. It may or may not be practical to build a
device which detects the presence of corners and flat spots in the boundary of
plane figures by constructing approximations to scale-averaged Fourier transforms.
Similarly, it may or may not be the case that wave-like signal patterns interacting
in an animal nervous system can form something approximating a Fourier-like
integral transform of sensory imputs. Still, it is interesting that a simple averaging
process applied to a simple frequency spectrum representation tends to pick out
precisely those features of a plane polygon which are also conspicuous to the
human perceptual apparatus.

2. General considerations. The idea ofclassifying objects according to whether
or not they are "connected" by some member of a given class of transformations,
and the correlated idea of detecting the existence of such a connection through an
examination of transformation invariant properties, both run through all of
mathematics (especially geometry and topology).2 In a fundamental way, these
ideas are direct abstractions from primitive characteristics of the interaction
between human perceptual mechanisms and the external world. Consequently,
they are also of central importance in any theoretical study of pattern classification.

For example, each portion of Fig. 1 generates a different state of internal
nervous activity in the brain, i.e., a different perception. Yet, what differences do
exist can be completely canceled by suitable external manipulations of the
things which are "causing" the perceptions, e.g., by tearing the page along the
dashed lines and bringing each separate portion to the appropriate spatial location
relative to the eye. Our perceptions of the objects in Fig. 1 have the common name,
"square", precisely because they are obtainable one from another by a delimited
class of actions called similarity transformations (composites of translations,
rotations, and dilations).

Any square can be obtained from any other square by a similarity trans-
formation, and to this extent, all squares are equivalent. Similarly, any equilateral
triangle can be obtained from any other equilateral triangle by a similarity trans-
formation, hence all equilateral triangles are equivalent in the same way. But

Klein’s "Erlanger program"; cf. [1, pp. 14-18] and [4, p. 125].
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FIG.

no square can be obtained from any equilateral triangle by a similarity trans-
formation; consequently squares and equilateral triangles are not (similarity)
equivalent. In general, the group of similarity transformations divides the totality
of plane figures into disjoint equivalence classes, of which "square" and "equi-
lateral triangle" are but two examples.

A figure is recognizable as a square because it displays certain similarity-
invariant properties which all squares have in common and which, in total, no
other figure possesses. For instance, "number of corners in the boundary" is a
figural property that survives any similarity transformation; evidently, this
property is sufficient to distinguish between circles, squares, and equilateral
triangles, up to a similarity transformation; however, it is not sufficient to dis-
tinguish between squares and rectangles, etc. Finer discrimination requires
additional "elementary" invariant properties; total discrimination requires a
complete set of invariant properties, capable of separating all the similarity-
equivalence classes of figures in the plane.

The abstract concepts of group equivalence and group invariant are straight-
forward generalizations of the foregoing considerations. An account of these
ideas can be found in basic texts on algebra and group theory, e.g., [1] and [4];
however, a brief discussion is included here for convenience.

Let S denote an arbitrary set of objects s, let N denote an arbitrary group of
transformations T:S S, and let always signify equality (i.e., identity). N
induces a relation on S in the following way:

S S2 S 2 Ys for some T

This relation is reflexive (s s for all s e S) because must contain the identity
transformation; it is symmetric (Sl -=, s2 s2 sl) because must contain with
every T its inverse transformation; and finally, it is transitive (Sl -= s2 and
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S2 S3 S $3) because (5 must be closed under its operation, viz., composition
of transformations. Thus, has all the basic abstract properties of an equivalence
relation; like any equivalence relation, it divides S into disjoint equivalence classes,
Es {s’ e SIs’ s}. Evidently, sees for all s in S, and sl s2 Es, E
(empty set).

Let Y denote an arbitrary set (different from S, in general) and let f* map
S into Y. The function f* is an invariant under N if and only if f* is constant on
each equivalence class E or equivalently, if and only if

f*(Ts) f*(s) for all s in S and all T in ft.

The function f* is a complete invariant under c if and only iff* is an invariant and

f* has different values on different equivalence classes, or, more precisely, if and
only if f*(sl)= f*(s2)<::> s1 $2 (<=I> S 2 Ts for some Te N); in this sense, a
complete invariant "separates" the equivalence classes induced by N.

Each group of transformations on S poses the problem of finding a complete
invariant which characterizes equivalence under that group. A consideration of
specific instances of this problem shows that complete invariants typically are
built upon a substructure of many "simpler" but individually incomplete com-
ponents which are, in effect, elementary invariant "features" of the objects in S.
Thus, if Z is some arbitrary set and if *(o),. ):S --, Z is an invariant under
for each o in some (not necessarily denumerable) index set, f, then

f*(s) *(., s):f2 Z

defines a function, f* :S --, Y {set of functions: fl Z}, which is also invariant
under N. Furthermore, if f is "sufficiently large", f* may be a complete invariant
even though the objects in Z are in some sense much simpler than the objects in S.

When Z is the real or complex field, e* :S Z is called a numerical or
quantitative invariant (e.g., "number of corners in the boundary" is an integer-
valued similarity-invariant). Depending on the nature of S and a3, numerical
invariants may provide a "natural" basis for a complete invariant. 3 In any event,
the next section shows how significant numerical invariants may be obtained by
the group averaging principle, and adapts this principle to the one-parameter
continuous group of dilatations.

3. Group averaging principles and dilatation groups. Let C denote the com-
plex number system, let (. ): S - C denote an arbitrary functional on S, and let

be afinite group of transformations T:S S, with parametric representation
l T/;/ {1, 2, ..., N}.

LEMMA 3.1. If Q is any symmetric function from Cu --, C, then the rule

e*(s) Q(e(T (s)), (T2(s)) ..., (Tu(s))), s S,

defines an invariant functional under

Not always: e.g., algebraic topology investigates the equivalence of topological manifolds
under the group of homeomorphic (one-to-one, onto, bicontinuous) transformations; here, the appro-
priate elementary invariants are "group-valued," i.e., they assign to each manifold certain homeo-
morphically invariant groups (homotopy and homology groups). In this case, Z is a set of algebraic
systems, viz., groups (more precisely, isomorphic-equivalence classes of groups; cf. [5]).
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Proof Since .Y is a group, the correspondence T TTk is a bijection
(one-to-one onto mapping) for each fixed k e{1,..., N}. Thus {T1T(s),..-
TNT(s)} is a permutation of Tl(s), TN(s)} for all s e S, and since Q is symmetric,

(3.1) *(T(s)) Q((T1T(s)), e(TuT(s)) Q((TI(s)), (Tu(s)))

for all s e S, all k e 1, ..., N}.
COROLLARY 3.1.1 (Group averaging principle). The rule

N, ((s)), s e s,(3.2) e*(s)
=

defines an invariant functional under 4
Corollary 3.1.1 can be extended in various ways to certain infinite groups.

All such extensions obviously presuppose some meaningful notion of summation
over infinite sets, e.g., a notion of integration. In this setting, analogues of (3.2) are
provided by expressions of the following kind:

f (T()) dlt(T) #() < ,(3.3a)
#(N)

(3.3b) f (T(e)) d#(7), #(N) ,

where the integrals are taken with respect to a measure function g given on some
suitable collection of "measurable" subsets of the group manifold N. However,
invariance of the functionals obtained from these expressions does not now follow
automatically, but depends in a crucial way upon the measure/. For example, if
R is an arbitrary transformation in a, then the correspondence, T ---, TR, called a
right "translation" of , is once again bijective. Therefore, with reference to (3.3a)
and (3.3b),

(3.4) (x*(R(s)) __A f( o(TR(s)) d]..f(T) f( (x(T’(s)) d[d(T’R-1)

However, the final step required for invariance, viz.,

(3.5) f o(T’(s))dla(T’R-1) f (T’(s))dla(T’) - o*(s),

goes through if and only if the measure is preserved under right translations of
ft.5 Similarly, the invariance of functionals arising from (3.3c) also depends upon

’ Corollary 3.1.1 is really a "summation principle," since the factor 1/N is irrelevant to the in-

variance of *. However, certain extensions of this result (including one considered in this paper)
do depend in an essential way on averaging processes as opposed to summation processes.
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the properties of #, although right translation invariance is unnecessarily restric-
tive in this case and can be replaced by the weaker sufficient condition,

(3.6) p(R(’)) J(R)p(cff),

where ’ is an arbitrary measurable subset of N, R(’) is the right translation of

’ under R (i.e., R(N’) {Ve qIV TR, Te q’}, and J(R)is a scalar depending
onR.

For a broad class of transformation groups (, (3.6) is satisfied by ordinary
Lebesgue measure on a suitable parameter space of N. In particular, this holds for
any dilatation group and leads to a basic averaging principle for the construction
of scale invariant functionals.

DEFINITION 3.1. is called a dilatation group if and only if is isomorphic
to the group (Ri, of positive real numbers under multiplication ". ", i.e., if
and only if there exists a bijection T:(0, ) --, N such that T, T2 T,.2 for all, 2 (0, ).

LEMMA 3.2. Let {T :S Sla (0, v)) be a dilatation group and let p
denote ordinary Lebesgue measure on (0, ). Furthermore, let a(T(s)) be locally
integrable in a for each s S, and let

(3.7) lim [1 f] 1 [1 f]L--,
Re a(T(s)) dg(a) + L-olim Im a(T(s)) dg(a

(3.8) g*(s) lim Re e(T(s)) dp(a) + lim Im a(T(s)) dg(a
L-*oe

Then for all 2 (0, o ), and all s S,
(3.9) *(Tz(s)) *(s),

(3.10) a_*(T(s)) a_*(s),

i.e., *(s) and a_*(s) are invariant under fff.
Proof. Let a’= a. 2. Then

(TT(s)) alp(a) (T.(s)) alp(a) (T,(s)) dp(a’).

Therefore,

Equation (3.10) follows in the same way.

4. Plane figures and scale invariant Fourier transform averages. The balance of
this paper consists of a specific application of the foregoing considerations within
the context of a "pattern classification" problem. From now on, S will be a set of

Invariant measure is the analogue of the equal weight measure inherent in the finite sum (3.2)"
cf. Ill.

In the case of compact finite-dimensional Lie groups, Weyl Ill describes a simple and systematic
method of obtaining invariant measures from ordinary Lebesgue measure.
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plane figures, (co". )’S C will give the value of the Fourier transform of s e S
as co ranges over f Rz, and will be a particular dilatation group of trans-
formations, T: S ---, S, described shortly. To begin with, the following definitions
are required.

DEFINITION 4.1. A plane figure is any nonempty, compact (i.e., closed and
bounded), Lebesgue measurable subset of R2.

DEFINITION 4.2. Let if(s) (ffl(s), 2(s)) denote the centroid of a plane figure
s. Then the rule

x+(s)s,
(4.) (x; s)

0, x+X(s)s,

defines the centroidal characteristic function of s as x ranges over R2 and the rule

(4.2) e(co; s) b(x; s) ei<’’x> duz(x), R2,
OR

defines the (centroidal) Fourier transform of s, where (co, x) the standard inner
product on R2 (colx -+- coZX2) and/(x) Lebesgue product measure on R2.

Notice that the support of the characteristic function b(. ;s) is simply the
image of s under a translation that takes the centroid of s to the origin. It follows
that b(.; s) and the associated Fourier transform e(.; s) are automatically in-
variant under the similarity subgroup of translations. 6 For present purposes,
however, translation invariance of the Fourier transform is merely an incidental
benefit of Definition 4.2; the principal virtue of this definition is that it leads to the
fewest complications later on when averages are taken over the dilatation group
described below.

For all a (0, oe), the correspondence

(4.3) x if(s) + a. Ix if(s)]

produces a linear, and therefore continuous, map of R2 onto itself. Since compact-
ness and measurability are preserved under continuous maps, it follows that the
set

(4.4) T(s) y (s) + a[x- (s)]]x s}
belongs to S whenever se S; i.e., (4.4) describes a transformation T’S---, S.
Evidently T changes the "size" of s, without altering its "shape", "orientation",
or the location of its centroid. For example,

X(T()) -f’o y d(y) .f ((s) + o-Ix ())o- d()
(4.5)

fT,(s) dial(y) I d/2(x)

(s), for all a (0, oo), all s S.

Furthermore, we have the following lemma.
LEMMA 4.1. As a ranges over (0, ), the transformations T’S --. S defined by

(4.4) form a dilatation group
Proof Definition 3.1 requires that the correspondence, a--. T, be an iso-

morphism on (R-,.).
Not to be confused with the "right translations of a group" considered in 3.
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Let s {x,-x}, where x is an arbitrary nonzero vector in R2. Then for, (0, ),
:Us)

(4.6)
T,(s) {2.x, -2. x};

consequently, T(s)= Tx(s) a 2; it follows that T Tx a 2, i.e., the
correspondence a --, T is bijective.

Furthermore, for general s e S, it follows easily from (4.4) that

(4.7) TTx(s)= T.x(s).

Thus, a --, T is an isomorphism on (R,.).
The following self-evident lemma leads to a useful representation for the

Fourier transform of T(s).
LEMMA 4.2. For all a e (0, oo), and all s S,

(4.8)

(4.9)

(4.10) =re di)(Y-;s)ei<’’’>d122(y)’a

O(Y T(s)) O( s) y R2.

LEMMA 4.3. For all 0. (0, ), s S, the Fourier transform of T(s) is given by

o(co; T(s)) 0.2 fR O(X S) ei<’x> dfl2(x).

Proof. From Definition 4.2 and Lemma 4.2,

(; T.(s)) f O(Y; T.(s)) ei(’y) dp2(y)

In the sense of (3.7) and (3.8).
This procedure is straightforward but not well-suited for general figures. A different approach

is employed later on.

Let x y/0.. Then (co, y) 0.(co, x), d#2(y 0
.2 d/t2(x and (4.9) follows from

(4.10).
COROLLARY 4.3.1. For each fixed co R2 and s S, e(co; T(s)) is continuous in 0.,

and therefore locally integrable on (0, o).
The final lemma of 3 now gives the following theorem.
THEOREM 4.1. Let 8*(co; s) and _*(co; s) denote, respectively, the lim sup and

lim inf of

0.2(4.11) a(co; T(s))dl(a) - O(x,s)ei(’x) dla2(x)dlal(a

as L - o.v For each co R2, the corresponding junctionals 8*(co;. and _*(co;.
from S into the extended complex plane are invariant under the group

Proof. Lemmas 3.2, 4.1, and Corollary 4.3.1 give the result.
For elementary polygonal figures, such as rectangles, rhombi, etc., it is

feasible to compute 8" and a_* from (4.11) by writing the Fourier transform as an
iterated integral over the coordinates of x (x , x2). s These simple examples show
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that 5" and _* are nontrivial invariants (i.e., not constant on all of S). They also
lead to an interesting conjecture about the behavior of 5" and _* for general figures,
namely, that these invariants have (i) a common, nonzero, real value only if co is
perpendicular to a ray passing from the centroid through a corner in the bound-
ary of s, (ii) have distinct complex values or a common infinite "value" only if
co is perpendicular to a flat edge in the boundary of s, (iii) have the common value
zero for all remaining co 4= 0. It turns out that this conjecture is correct for the
general polygonal figure, and derives from a still more fundamental sensitivity of
5" and _* to chordal width irregularities. The proof is developed in the next
series of lemmas.

The following result shows that 5" and _* are determined for all co =/= 0 by
their values on the unit circle.

LEMMA 4.4. For every k

*(kco; s) (1/kZ)*(co;s),
(4.12)

g*(kco; s) (1/kZ)g_*(co;s).

Proof. From Lemma 4.3 and the definition of *,

*(ks) limlf" fR0
.2

I-o0 L

Put ’= k. Then

1-]-
t

fR(*(kco s) - L-+oo - (0")2 )(X; S) ei’’<’’x> d/z(X)dlal(a’)

--*(co s).

The conclusion for *(co" s) follows in the same way.
In view of Lemma 4.4, nothing is lost by restricting 5*(. s) and g*(." s) to the

unit circle, i.e., by limiting co-values to unit vectors of the form

(4.13) e(0) (cos 0, sin 0), 0 [0, 2rt).

More precisely, the original family of quantitative invariants, *(co; s), 0_*(co; s),
for co e R2, and its subfamily, *(e(0) s), g*(e(0) s), for 0 e [0, 2rt), have exactly the
same power to discriminate among the equivalence classes induced by the dilata-
tion group, fib. This is intuitively satisfying, if one considers that the boundary
points of "ordinary" plane figures form one-dimensional manifolds, and that these
manifolds, in effect, determine the figures to which they belong. It is therefore
reasonable to suspect that a manifold of quantitative figural invariants is "un-
necessarily large" if its dimension exceeds unity.

The problem now is to find an effective technique for computing *(0; s) and
g*(0; s)9 for general s, or at least for general polygonal figures. As noted earlier,
the standard approach of treating the Fourier transform as an iterated integral
over Xl and x2 is workable only for simple polygonal figures, and even here, it
obscures the underlying reason for the observed behavior of 5" and _*. In order to

From now on, it will be convenient to replace e(0) by 0 in the arguments of 0, 8, and g*.
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understand this behavior, it is necessary to compute the Fourier transform,
e(0; Tjs)), as an iterated integral with respect to an orthogonal coordinate frame
attached to the unit vector e(0). When this is done, it becomes clear that the be-
havior of 4" and _* is governed by singularities in the figural width variation along
a line parallel to e(0).

For fixed 0 [0, 2re) and for fixed R, the set of points

(4.14) L(, O) {x e Rzlx e(O) + rle(O + c/2); qeR1}
is a line perpendicular to e(0) and passing through the point e(0). The intersection
of this line with the support of b for a given figure, s, is either empty or forms a
replica of a chord of s. Evidently, the "length" of this chord is simply the Lebesgue
measure of the set (cf. Def. 4.2 and Fig. 2)

{r Rldp(e(O) + qe(O + re/2); s) 1}.

e
f(x;s)-- :I

S

Fo. 2

DEFINITION 4.3. Let/t ordinary Lebesgue measure on R. Then the rule

(4.15) W(, O;s)=/x,{qlb(e(0) + qe(0 + n/Z); s)= 1}
defines the chordal width function for a plane figure s.

Definition 4.3 is motivated by the following lemma and its consequences.
LEMMA 4.5.
(a) For all O, s, W(., O s) R R is nonnegative, bounded, measurable, and

has compact support.
(b) For all a e (0, Do), the Fourier transform of T(s) is given by

(4.16) (0; T(s)) (T2 F W(, O; s) ei d#(),
dR
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i.e., the (two-dimensional) Fourier transform of T,(s) is gotten from the product of a2

with the (one-dimensional) Fourier transform of W(., O s).
(c) The invariants *(0; s) and _*(0; s) are, respectively, the lim and lim of

a2 W( O" s)ei** dpl() dpl(O’)(4.17)
L

as L o.
Proof. (a) Definitions 4.1 and 4.3 give the result.
(b) Let

(4.18) x e(0) + r/e(0 + z/2),

i.e., Xl cos 0 r/ sin 0 and X2 sin 0 + r/ cos 0. Then (e(0), x) , and
Lemma 4.3 gives

(4.19) (0; T(s)) a2 b(x(, q, 0); s) ei‘ d#2(x(, ri, 0)).
R

Furthermore, for each 0, the transformation, (, ])"(Xl,.,Y2) defined by (4.18),
is orthogonal. Consequently, it preserves the Lebesgue product measure P2, and
thus

(4.20)

fR (X(, rl, 0); S) ei dpz(X(, q, 0))

fR n, o); s) ei’r d//2(,

Equation (4.16) now follows immediately from (4.19), (4.20), and Definition 4.3.
(c) Equations (4.11) and (4.16) give the desired result.
Lemma 4.5 establishes the desired relationship between the chordal width

function W, and the invariants * and a_*. The following result shows that this
relationship is either trivial or is dominated by singularities in the derivative,
W’ (didO)W(., O; s).

LEMMA 4.6. If W’( 0 S) is absolutely continuous on R then *(0 s) *(0 s)
--0.

Proof W has compact support" therefore, for some M > 0, [[ __> M
= W(, O s) W’(, O s) W"(, O s) 0. Furthermore, since W’ is absolutely
continuous, W" exists almost everywhere and belongs to 5(-, ). Conse-
quently, two successive integrations by parts give

fR W(, O;s) eir dpl() W(, O;s)ei dp,()

a2 W"(, O s) ei dla()
M- ()/
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where I is continuous on R1 and lim_. l(a) 0 (cf. [6]). It follows that

lim f] f lf]0"
2

L-
W(, 0", s) ei dpl() dpl(0-) L_.lim W(0-) dp(0-) O.

The next section explores the causes and consequences of singularities in the
C-derivative of W for "ordinary" plane figures, and in particular, for polygonal
figures.

5. Ordinary plane figures and polygonal figures. Detinition 4.1 embraces many
pathological sets which do not conform to the intuitive concept of what a plane
figure ought to be. Thus, it is possible to find bounded measurable sets with chordal
width functions W, which for certain values of 0 are everywhere discontinuous on
their support or which oscillate infinitely often or which are continuous with a
derivative nowhere, etc., all within the broad characterization of Wgiven by Lemma
4.5. This kind of set is essentially uninteresting for present purposes; it is excluded
from the following subclass of "ordinary" plane figures.

DEFINITION 5.1. A figure s is an ordinary plane figure if and only if
(a) s consists of a simple (i.e., non-self-intersecting), closed, piecewise twice

continuously differentiable Jordan curve and its interior, or
(b) s consists of a finite union or difference of sets satisfying condition (a).

Since the subclass of ordinary plane figures is mapped onto itself by any similarity
transformation, and in particular by any dilatation, it is possible to exclude more
general plane figures from further consideration.

If s is an ordinary plane figure, then the singularities of its chordal width
function fall into three main categories:

(I) jump discontinuities in W(., 0; s);
(II) "corners" in W(., 0; s), i.e., points of continuity , where the left and

right sided -derivatives of W are finite but unequal;
(III) points of continuity , where W(., O;s) has an infinite right or left sided

C-derivative.
Jump discontinuities in W can result from flat spots, or "sides", in the boundary of
s (or more precisely, the boundary of qS’s support), as illustrated by Fig. 3; corners

e(e) /

FIG. 3
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e(9)
)

FIG. 4

e(e)

FIG. 5

e(e)

FIG. 6
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e(e)

FIG. 7

in Wtypically reflect corners in the boundary of s (Fig. 4); and finally, infinite right
or left sided derivatives of W can occur when the line L(, 0), as in (4.14), is tangent
to the boundary of s (Fig. 5). It should be noted, however, that flat spots or corners
may exist in the boundary of s without consequential irregularities in W(Figs. 6 and
7). This point will receive further attention in the next section; for the moment, the
main objective is to assess the influence of W’s singularities on the behavior of *
and _*. The following results go part of the way toward making this determination.

THEOREM 5.1. Suppose that W(., O; s) has a (distributional) derivative of the
following form"

N

w’(, o; s) w’(, o; s) + y w’((o, s))h( )
k=l

(.)
N

+ y w((0, s))( ),

where

w’(., O s) absolutely continuous function,

{1(0, s) < < N(0, s)} finite subset of W’s support,

h(. Heaviside unit step function,

6(. Dirac delta distribution,

[W(k(O, s))] jump in Wacross (0, s),

[W’((O, s))] jump in W’ across (0, s).

Then

f]" iL
a(O; T(s))d#(a)= --[-W(O)] [W’(O)] +

[W((O, s))] eiu(o,s)L

(5.2) + L o ((0, s))

(e", 1)
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CO"({, 19; S) eiga d#() dla(a)

where the.first two terms are absent/f0 {,(0, s), {(0, s)}.
Proof. By a straightforward application of the integration by parts procedure

used in the proof of Lemma 4.6, and the distributional identity, (d/d{)h({)
the result is obtained. Details are omitted in the interest of brevity.

COROLLARY 5.1.1.

(a) *(O,s) --W’(O) .ql_ L-lim ([W(O)] +

o*(o, s) -[w’(o) + !i_m_ TIw(o)3 +
L-,"

(b) W(., O; s) is continuous *(0; s) _a*(0; s) [W’(0)].
These conclusions follow at once from the fact that eiCkt’s)L is bounded and the

fact that

lim fofR w"( O’s)eidt()dl(a,=O

since w"e 1(_ co, co).
Corollary 5.1.1 completely characterizes * and a_* for the class of ordinary

plane figures whose width functions exhibit only the first two types of singularities
listed at the beginning of this section. For all practical purposes, this class consists
entirely of polygonal figures, as we shall see next.

DEFINITION 5.2. A figure s is a polygonal figure if and only if
(a) s consists of a simple closed polygon (cf. [7]) and its interior, or
(b) s is a finite sum or difference of sets satisfying condition (a).
THEOREM 5.2. If S is a polygonal figure, then W(. O; s) satisfies condition (5.1)

of Theorem 5.1 for all values of O.
Proof. The conclusion is obvious for triangular figures. Since every simple

closed polygon can be "triangulated" (cf. [7), it follows that every polygonal figure
is a finite union of triangular figures, ti, whose pairwise intersections have zero
measure, i.e.,

l(t, tj)= O, g= j.

From Definition 4.3 and the elementary properties of measure, it therefore follows
that

W(, O s) 2 W( ,i + , O ti),

where i centroid of t and 2 centroid of QJiti. Each term in this finite sum
has the property (5.1), consequently the sum also has the property (5.1).

Taken together, Theorems 5.1 and 5.2 provide the means for computing the
invariants g* and 8" for any polygonal figure via elementary trigonometrical
processes. The case of a rectangle offers a convenient illustration; e.g., when 0 0,
the width function of the rectangle in Fig. 8a is constant on its support with jump
discontinuities at the endpoints due to the fiat edges in the boundary of the
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e(e)

,.a
z

e(e)

ab ab
b

FiG. 8

rectangle. Part (a) of Corollary 5.1.1 applies in this case and gives

In the same way,

4*(0, "V--]")= lim
kr( b

i--,oo -a/2)
iaL/2 _.1..

b) ei,,L/2
(a/Z)

-lim[ 4b )] 4b
cos (aLl2 +--

Loo a a

(5.4) a_*(O, V-I") liml 4b )] 4b
cos (aL/2

L--
a a

When 0 falls in the range (0, re/2), W(., O; "V-I") is continuous furthermore,
[W’(O)] 0 except for 0 tan- (a/b), where

[W’(O)] 2(a2 + b2)/ab
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due to the corner in the boundary of the rectangle (cf. Fig. 8b). Consequently, part
(b) of Corollary 5.1.1 applies here and gives

2(aa + b2)
0 e (0 n/2)" 0 tan- (a/b),

(5.6) 5"(0;"--1") _*(0;"7-T’) ab

0 0 (0, n/2); 0 tan- (a/b).

Continuing in this way, one arrives at the following complete description of
*(0; "WT’) and _*(0; "WT’)"

(5.7) 5*(0" "V-]")= _*(0" "[")= 0,

with exceptions as listed in Table (O (0, n/2), tan-1 (a/b)).

TABLE
Exceptions to (5.7)

3n/2

2n

4b/a

(a + b2)
ab

4a/b

(a 4- b

ab

4b/a

(a + b2)
ab

4b/a

(a 4- b 2)
ab

-4b/a

2
(a2 +

ab

-4a/b

2
(a2 4- b2)

ab

-4b/a

(a + b2)
ab

-4b/a

(a 4- b 2)
2------

ab

There are several things worth noting about the foregoing example. First, if
the rectangle in Fig. 8 is rotated about its centroid through an angle fl, then the
corresponding description of 5" and _* is obtained by replacing 0 with 0 + fl in
(5.7). In other words, if R denotes the rotational (similarity) transformation in
question, then

5*(0, R("V--]"))= 5*(0 + fl, "7-T’),

a_*(0, R("V-]")) _*(0 + fl, "[--l").

This is, in fact, a general property of the scale invariants 5" and a_*, as is easily seen
from Definition 4.3 and (4.17).

Second, the entries in Table 1 are all real numbers. This is not a general property
of 5" and a_*; it does occur for figures with biaxial symmetry (e.g., the rectangle, all
equilateral 2N-gonal figures, etc.) because of a fortuitous combination of positive
and negative exponents appearing in the summations in part (a) of Corollary 5.1.1.



270 J. (2. DUNN

Finally, if one constructs a polar coordinate representation of the ordered
pairs (0, *) for those values of 0 where (* + _*)/2 - 0 in Table 1, the result is
something which "looks like" a scaled rotated image of the original rectangle
(Fig. 9). This also is not a general characteristic of* and _* however, it does occur
once again for biaxially symmetric polygonal figures since the corners of such
figures are arranged in diametrically opposing pairs.

FIG. 9

6. Open questions. If the boundary of an ordinary plane figure contains a
subarc of nonzero curvature, the associated width function W(., 0; s) will generally
exhibit type (III) singularities (infinite one-sided derivatives) at certain points
within its support (e.g., at boundary points) for some or all values of 0. As it stands,
Theorem 5.1 says nothing about *(0; s) and _*(0; s) for these values of 0, and the
method employed in its proof does not appear to extend to width functions with
type (III) singularities. The basic question is this: does Corollary 5.1.1 remain
valid when the component function w’ in (5.1) has (finitely many) type (III) singu-
larities? This question is not resolved here. However, an affirmative answer seems
plausible in the light of two considerations, viz., (a) a heuristic argument based on

FIG. 10
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polygonal approximations of s (this leads to an unresolved limit interchange
question), and (b) explicit calculations for the special case of the circle.

With regard to (b) above, consider the unit circle with width function

2 2
(6.1) W( 0""@")

v/ ]1 =< 1,all 0,

0, 1] > 1,all0

(cf. Fig. 10). The one-dimensional Fourier transform of (6.1) is

K
(6.2) 2 N//1 2. ei d#(a) --J,(a),

-1 O"

where K 4v/-F(3/2), F gamma function, and J1 first order Bessel function
(cf. [8, p. 321]). Consequently, it follows from Lemma 4.5, part (c), that 4" and g*

are, respectively, the lim and lim as L ---, c of

K ’ aJ(a) da.
L 30

But in view of the elementary Bessel identity, (d/da)Jo(a) -Jl(a)[93, an inte-
gration by parts gives

OJl(O- da Jo(a) da Jo(L)
L

Therefore, since limL_+ fzd Jo(a) da and limL_ Jo(L) 0 ([8, p. 665 and [9]),
it follows that 4" -a_* 0 for the circle. This result shows that the type (III)
singularities in the width function of the circle make no contribution to the values of
4" and g*, and suggests that the same conclusion may hold for more general
figures as well.

Another open question concerns the completeness of the invariants 4" and _*
(cf. 2). If the foregoing conjecture about Corollary 5.1.1 is correct, then * and
are certainly not complete with respect to the class of all ordinary plane figures,
since both invariants would then vanish identically for any figure with a smooth
curved boundary. On the other hand, it is not difficult to prove that * and a_* are
complete with respect to the class of equilateral polygonal figures. Between these
two extremes lies the class of all polygonal figures, and here the completeness
question is not so easily resolved.

Section 5 offered two examples of polygonal figures which demonstrate that
certain corners or edges in the boundary of a figure will not produce a singularity
in the associated width function (Figs. 6 and 7). Such corners or edges cannot be
detected in * and _a*, at least not explicitly; nevertheless, it may be possible to infer
their presence indirectly, as the only possible explanation of the values assumed by

* and a_* on the "visible" edges and vertices of the polygonal figure in question.
In other words, the inherent edge-vertex redundancy in 4" and g* may prove
sufficient to distinguish this kind of polygonal figure from any other non-scale-
equivalent polygonal figure. If not, then the subclass of convex polygonal figures
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appears to be the next most significant and likely candidate for completeness, since
the edges and vertices of convex figures are always visible in * and _,.lO

Apart from the foregoing special considerations, there are a number of
general questions growing out of the present investigation. For example, what
factors determine whether a given integral transform, when averaged over a given
group of figural transformations, will produce a nontrivial (perhaps even complete)
invariant with respect to a given class of figures? The scale-averaged Fourier trans-
form gives a nontrivial invariant for certain polygonal figures; is it unique in this
respect among integral transforms? Will the Fourier transform produce significant
results when averaged over other transformation groups, or do these groups call for
their own specific transforms? Finally, are any of these questions resolvable in
terms of simple structural relationships abstracted from the transforms, groups,
and figural classes under consideration?

REFERENCES

[1] H. WE’I, The Classical Groups: Their Invariants and Representations, 2nd ed., Princeton Univ.
Press, Princeton, N.J., 1953.

[2] W. PTa-s abaI) W. McCvII.OCI, How we know universals theperception ofauditory and visualforms,
Bull. Math. Biophys., 9 (1947), pp. 127-147.

[3] M. MINSKY AND S. PAPPERT, Perceptions, MIT Press, Cambridge, Mass., 1969.
[4] G. BIRKHOFF AND S. MACLANE, A Survey ofModern Algebra, 2nd ed., Macmillan, New York, 1953.
[5] A. H. WAILACE, An Introduction to Algebraic Topology, Pergamon Press, New York, 1957.

6] E. C. TITC4MARSI-I, Introduction to the Theory of the Fourier Integral, 2nd ed., Oxford Univ. Press,
New York, 1948.

[7] E. HILLE, Analytic Function Theory, vol. I, Blaisdell, New York, 1959.
[8] I. S. GRADSHTEYN AND I. M. RYSHIK, Table of Integrals, Series and Products, 4th ed., Academic

Press, New York, 1965.
[9] H. HOCHS’Am, Special Functions of Mathematical Physics, Holt, Rinehart, and Winston, New

York, 1966.

10 It is perhaps worth noting that the problem of undetected edges and vertices can be alleviated
to some extent if one is willing to tamper with the definition of W, e.g., if (4.15) is replaced by W({, 0" s)

#1{it >= 014({e(0) + qe(O + rt/2)" s) 1}, then (4.17) gives a new and different pair of invariants.
Under certain conditions, this "half-plane masking" device will eliminate cancellations of width
function singularities due to diametrically opposing pairs of congruent edges and/or vertices. For
example, every edge in Fig. 6 becomes visible in the new invariants (on the other hand, the vertices
of the square ring in Fig. 7 remain invisible).



SIAM J. COMPU’r.
Vol. 2, No. 4, December 1973

ON OPTIMAL PROCESSOR SCHEDULING
FOR MULTIPROGRAMMING*

L. J. BASSt

Abstract. This paper investigates the problem of scheduling a processor to optimize throughput
in a multiprogramming environment. A deterministic model is used to study the scheduling of a batch
of k programs residing in main memory of a system consisting of a single processor and k input-output
devices in such a way as to minimize the time to complete all k jobs.

It is shown that for any set of independent programs a preemptive strategy is not necessary to
obtain the minimum running time for the entire batch. There is always an interrupt driven schedule
which is as good as the best preemptive schedule.

It is also shown that processor bound programs are easy to schedule. A lower bound on the
completion time for any set of programs is observed, and it is shown that with processor bound pro-
grams the lower bound can always be obtained. An algorithm for obtaining this bound is given.

These results provide some insight into the workings of the dynamic scheduling algorithms in
use in many modern computer systems.

Key words, multiprogramming, scheduling, processor bound programs

A considerable amount of work has been done to place bounds on the per-
formance of multiple processor systems which process sequences of CPU-bound
programs. A survey of this work is presented in ]. This paper considers a sequence
ofprograms which use both the processor and an input-output device. The objective
is to complete the total processing of a batch of k programs which reside in the
primary memory in the shortest possible time. We show that an interrupt driven
schedule will produce the minimum completion time. We also demonstrate an
optimal strategy for scheduling a set of programs where two of the programs are
processor bound. This last result should help clarify the workings of the dynamic
scheduling algorithms in use in many current systems ([2-[53).

1. The model. We define a program Pi to be a finite sequence of integers
T,I, ti,1, "", ti,,,-1, T,,,, where ti,j > 0 for j =< n_ 1; T/,j > 0 for < j < hi; and
T/,j >= 0 for j or j hi. The T,j are the compute times of the programs and
the t,j are the wait (input-output) times. A program, then, is given by a fixed
sequence of compute, wait, compute, wait, etc.

The hardware portion of our model consists solely of one processor. We will
not model any contention for channels or devices, and. so we will assume programs
just wait instead of doing input-output.

The computer system we consider consists of k independent programs together
with the one processor and channels. A program, P, moves through the system
by being assigned the processor one unit at a time. When it has been assigned T,
units of processor time, it then waits ti,1 units regardless of any other activity in
the system. This is equivalent to assuming the existence of k input-output devices.
After t,l units of waiting, it then enters into competition for the processor again.
When it has been assigned T, 2 units, it again begins waiting. A program continues

* Received by the editors September 29, 1972, and in revised form May 11, 1973.

" Department of Computer Science, University of Rhode Island, Kingston, Rhode Island 02881.
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this process until its sequence is exhausted. While program is waiting, another
program may be assigned the processor, but only one program may be assigned
the processor at any one time (see Example 1). The mechanism by which a program
is assigned the processor is called the scheduler, and the scheduler, in assigning
the processor to a program, uses no time. We are interested in the algorithm by
which the scheduler assigns the processor.

Example 1. Action of the scheduler. Let Pi be given by Tl,1 -4, tl,1 3,
T1, 2 1, 1,2 3, T1, 3 2 and P2 be given by T2,1 1, t2,1 3, T:z,2 3.
Let denote the assignment of the processor for one unit and denote waiting
for one unit,
Then some possible schedules are:

(1) P
P:

(2) P
P:

(3) Pi
P:

Total Time 14

Total Time 14

Total Time 13.
(optimal)

Let P1, "’", Pk be some fixed set of independent programs. We are interested
in the schedule which produces the shortest time to completion of all the programs.
We will denote this time by R(P1, ..., Pk). Our results, then, pertain to scheduling
for throughput or utilization. It can be argued that turnaround (minimizing
average time to completion) is the best strategy for scheduling at computer
installations, but we are only concerned with scheduling after the programs have
reached the multiprogrammed state, i.e., have entered the system. It is entirely
feasible to decide which programs to introduce into the system on a basis other
than throughput and still to schedule the processor on a throughput basis. Indeed,
this is what is done at many computer installations.

Notation. As mentioned, R(P1,..., P) is the minimum possible time to
completion of all k programs. We will need the notion of assigning the processor
to a particular program for one unit of time. Fix i. We will define Ri(P1,’", P).
In defining Ri(P1,’", P), the processor is assigned to program for one unit of
time, at the first compute interval (if it is positive). More precisely, if T, 0,
then Ri(P1,’", P) R(P1,.’., Pk). If T, > 0, then let program P’i be given by
the sequence T/, l, ti,1, T,a, ..., T/,,,, and then Ri(P1,’", Pi,’", P)=
+ R(P1,..., PI,"’, P). Intuitively, Ri(P1,"’, P) is the time achieved by the
schedule ofassigning the processor to P for one unit and then choosing the optimum
schedule for the remaining time. Clearly, R(P1, ..., P) mini _<i_<k Ri(P1 ,"’, P).

2. Interrupt driven schedules. We have, by our definitions, created a model
with no-cost, preemptive scheduling. Our first theorem shows that a general
preemptive schedule is not necessary. The minimum time to completion for a set
of programs can be achieved by using an interrupt driven strategy, i.e., reassign
the processor only upon the completion of a compute period by some program or
completion of a wait period by some program. Before proving this theorem, we
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need to prove several lemmas. These lemmas, except for Lemma 3, are technical
and serve only to show that the model is well-behaved.

L]MMA 1. Let <= <= k. Let PI be given by T, + 1, ti,1, T,2, T,,,. Then
+ R,(PI,..., P,,..., P) >= R(P,,..., P’,..., P), and + R(P,,..., P,,..., P)

>_ R(P, Pi, P).
Proof. + R(P,, P, P) >= + R(P,, P, P) R(P,

nl P) > R(P, P’i,...,P)
LEMMA 2. Let <= i, j <_ k. Let P be given by T, + 1, tj,, Tj,2,... Tj,nj.

Then + Ri(P, Pj, Pk) >= R(Pa, Pj, Pk).
Proof. If j or T, 0, then this follows from Lemma 1, so we can assume

4: j and T, >= 1. Let PI be given by T, 1, ti,,’.., T,,,. Then we have

+Ri(P,...,P,...,P,...,P)=2+ R(P,...,P,,...,P,...,P)

>= + R(P, Pi, Pj, Pk)

It has occasionally been asked what is the effect on total system performance
of making one program more efficient. The next lemma shows that it can never
hurt to shorten the first compute interval of the program. An easy consequence
of Lemma 3 is that it never hurts to shorten the computing portion of the program.

LEMMA 3. Let < <= k, and let PI be given by Ti, + 1, ti,, Ti,2,... Ti,ni.
ThenR(P,,...,P, Pk) > R(PI, P Pk)

Proof The proof follows by induction on T,j + ti,j. If this sum is 1, then
the result is clear. Assume the theorem is false, and let T,j + : ti, be the least
for which it fails. Then for some j, we must have

R(P ,..., Pi, P) > R(P, ,..., PI, "", P) (P1 ,"’, P,, P).
If/= j, we have

R(P1, Pi, P) > R(P, P, Pk) / R(P, Pi, P),

a contradiction, and so we have - j. Furthermore, if for all j 4: we have Tj,1 O,
then we can take j and derive the same contradiction. Thus we can take
Wj,1 > O.

Now let P} be given by T, 1, tj,1, ..., T,,j. Then by the induction hypo-
thesis and the above, we have

R(P,, P, Pk) > Rj(P,, P,, P)

+ R(P,...,Pj,...,Pi,...,P)
>_ + R(P,, Pj, P,, P)

This contradiction proves the lemma.
Now we are prepared to prove that with the appropriate assignment of the

processor we can allow a program to compute until either it voluntarily yields
the processor or another program finishes waiting. We first prove a lemma which
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says that if assigning the processor to program j is best at one point, then it is
also best at other points while the processor is computing on the first compute
interval ofprogramj. For notational convenience in both the statement ofLemma 4
and its proof, we ignore the fact that if T, 0, then ti.1 decrements as we assign
the processor, and hence we are dealing with a different program, Pi, at each step.
This is a technical point which has no critical effect upon either the lemma or the
proof.

LEMMA 4. Let i,j <= k and let S <= Tj, If Ri(P, Pk) R(Px, Pk) and
iffor all p <= S, PI is given by T, 1, T,,i and P is given by T, p, tj,1,
Tj,, and R(P,, PI, P, P) Rj(PI, P’i, P, P), then
for any p <= S, we have

p)= Ri(P,,... p,...R(P,, P, P) P, P)

Proof. The proof is by induction on p. For the purposes of this proof, let P’i
be given by T, 1, ..., T,,,. If p 0, then if the lemma is not true, we have

R2(P1, P.) > R,(Pi, P) 1 + R(P,, P, Pj, P)

(by hypothesis on j) 1 + Rj(Pa,..., PI,’", P)

(by Lemma (3) >= Rj(PI, Pi, P)

This is a contradiction. Now let the lemma be true for p n < S. Let P) be
given by T2, p, tj, a, ..., Tj,,. and P’ be given by T,a p + 1, tj, a, -..,
Now, for the sake of contradiction, assume

R,(P,, P, Pj, Pk) > R(P,, P, Pj, P)

Then we have (by hypothesis on j)

R(P P) (n P)x, P, P2, Rj 1, P, Pj,

(by definition) Ri(P1, P, P2, P)

(by hypothesis to be contradicted) >= 1 + R(Pa,..., P,..., Pj,..., Pk)

(by Lemma 1) >= R(P1, P, Pj, P)

(by induction hypothesis) 1 + R(P,..., PI,"’, P,"’, P).

This is a contradiction, and hence

(n Pk) R(P Pi P)Ri 1, Pi, P, x, P2,
Now, to prove the lemma, we need to show

(P P, P) (P Pi Pk)Rj , Pj, R , Pj,

Assume for the sake of contradiction this is false. Then by the result just proved,
we must have

Rj(P,, P, P), P) > Ri(P,, P, P), P)

(by definition) + R(P,..., PI,"’, P),"’, P)
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(by hypothesis on j)

(by Lemma 3)

(P’I P’ P)+ Rj ,"’,Pi,’" j,"’,

>= Rj(PI, Pi, Pj, Pk).

This contradiction proves Lemma 4.
THEOREM 1. Let Q {j; Tj, 0}. Then
(a) if Q 1,..., k}, let minjo (t,x) and for all <= k, let P’ be given by

0, ti, I, Ti,2, Ti,n, !f ti, > l,
P"

Ti 2,"" ,T,,, (f ti,, I.

Then R(Pa, Pk) + R(P’a, P’).
(If none of the programs wants the processor, then delay until one of them finishes
waiting.)

(b) If Q : {1,..., k}, let

minj(2(tj 1) (fQ :/: ,
l-

Zj<k YJ, !]oO .
Then there exists a j such that if PI is given by

P,

Tj, min (/, Tj,1) tj,1, Tj,2,... T,, /’i =.j,

and j 4: i,

3. Scheduling processor bound programs. We now examine the problem of
deciding on the optimal schedule where some of the programs are processor bound.

then R(P,,..., P)= min (1, T.I) + R(P’I,..., P’).
(Here is the time until one of the programs finishes waiting--an arbitrary large
number of no programs are waiting--and Tj, is the time until program j begins
waiting. Thus, the P’ represent what happens to programs P if the processor is
assigned to program Pj until either it yields the processor or another program
begins waiting).

Proof. The proof of part (a) is obvious and will be omitted. The proof of
part (b) proceeds by induction on T/3 + ti,j. If this sum is 1, the theorem is
trivially true, so assume part (b) holds for T, n and consider T, + t,
=n+l.

Suppose the theorem is false. For some such that T, -0, we have
R(P,..., P)= R(P,..., P). If T, 1, we are done: thus, T, > 1. Let
be given by T/, 1, tg,1, ..., T,,, and then by the induction hypothesis, there is
aj such that R(P1,..., Pi,..., P) min(Tj, l,1 1) + R(P’I,..., P,..., Pk),
where the P’ are given by the hypothesis of part (b). If j, we are done, and so
it must be the case that :/: j.

Since we are assuming the theorem is false, it must also be the case that for

so,me p __< min (Tj,, 1), we have P) given by Tj, p, tj, l,... Tj,n and Rj(P’I,...,
Pj, ..., P’) > R(P’ ..., P., ..., P’). This contradicts Lemma 4, and we are done.

0, t,, min (1, Tj,1) T/,2, Ti,ni !/’i :/: j, Ti, O, and ti. :/: l,

Ti,2, ti,2, Ti,n, otherwise,
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We first examine the case where only two programs are involved, and then we
utilize the results obtained with two programs to examine the problem of more
than two programs.

It is easily seen that any optimal scheduling strategy for arbitrary programs
must examine the whole of the programs involved (see Example 2). What we shall
now prove, for the case of two programs, is that if we know certain information
about the programs involved, then the optimal schedule can be determined by
examining just the first compute interval of each program and that, furthermore,
the optimum schedule is given by assigning the process to the program whose
first compute interval is smallest.

Example 2. Examination of entire programs. Let P1 be given by TI, 10,
tl, 3, T1, 2 10, tl, 2 3, T1, 3 10, tl,4 3, T1, 10, and P2 be given by
T2,1= 1, t2,1= 3, T2,2 1, t2,2 =3, T2,3 1. Then R(P1,P2)= T1,1+ tl,1
+ T1,2 + tl,2 + T1,3 + tl,4 + T1,5, and any scheduling strategy based on only
initial portions of the programs of less than 3 compute segments will fail to
recognize this. This example is easily extended to arbitrarily long initial segments.

First we note that for programs P, ..., Pk, a lower bound on the time to
completion is the maximum of the sum ofthe processor times over all the programs
and the maximum of the times the individual programs would take when running
alone. Formally,

R(P1, "",Pk) > max T,j, max Ti,j-+- Z ti,j) ).i<_k j<-_ni i<=k j<-ni j<ni

What we shall prove, initially, is that for the case of two programs which are
processor bound, the lower bound is achievable and if the lower bound is the sum
of the processor times, then it can be achieved by a variation on choosing the
shortest compute interval first.

We say two programs P and P2 are processor bound with respect to each other

and

and either

T1, >= t2, for < =< r/1 and =< j < n2

T2, >= l, for < =< n2 and =< j < n

T1,1 t2, or T2,1 __> t,.
Intuitively, this definition says that, with the possible exception of one of the
initial compute times, all of the compute times of P are greater than any of the
wait times of P2 and vice versa. With two such programs, the lower bound can
always be achieved, and if the lower bound is the sum of the processor times, then
the appropriate strategy is to assign the processor to the program with the smallest
compute segment relative to the other program’s first wait interval. We formalize
and prove this in the next theorem.

THEOREM 2. Let PI and P2 be processor bound with respect to each other and let

R(PI,P2) > max Ti,j + t,,).i= 1,2 j<--ni j<ni
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Then

R(P,P2) T/,2.
i= 1,2 j<=ni

Furthermore, if T, t2, >_ T2, tl,l, then R2(P, P2) R(P, P2).
Proof. The proof proceeds by induction on i- ,2 tl T/,j, If this sum is 1,

the theorem is clear. Assume the theorem is true for all programs such that
--,2 2<_,, T,2 < n, and we will show it to be true for programs such that

Zi= 1,2 Ej<=ni Ti,j n. Let T1,1 t2,1 T2,1 tl, If T2,1 0, then since Pl and

P2 are processor bound with respect to each other, it must be that T,I >= t2,1.
In this case, we have Rz(P,P2)= R(P,P2)= t2,1 + R(P’,P’2), where P] is
given by T1,1 t2,1,/1,1, ..., Tin and P is given by T2 2,t2,2, "--.T2.n.
P’I and P2 are processor bound with respect to each other and R(P’I, P;2)

t,)) Thus, by> max (Zi<_j<_n, T1, -b- Ej<n, tl,J t2,1’ Z2<j<n2 T2,j -+- Z2__<j<n2
induction,

R(P’I, P)= Z Z T/,j + T1, /72,1
i= 1,2 <-j<-ni

Combining these two equalities, we obtain

R(P,, P) Ti, + T,,,
i= 1,2 <j<=n

as desired. If T, > 0 then, letting P be given by T, 1, t, 1,..., T,, and
observing that P1 and P are processor bound with respect to each other, we have
by the induction hypothesis,

R2(P1, P2)-- + R(P1, P’2)= + T, + T,,, + T2, 1,
i= 1,2 2 <=j<=ni

and the theorem is proved.
Example 3. Shortest first is not always optimum. Let P1 be given by T1,1 3,

tl, 3, T1, 2 and P2 by T2, 6, t2,1 3, T2, 2 5. Then R(Px,P2)> T1,1
+ t,,1 + T1,2 and R(P1,P2)> T2,1 -F t2,1 -k- T2,1.

Scheduling by shortest first yields:

/)1 (18 units).

Even recognizing that P1 should not be chosen when it has no wait time left
yields:

P1 (17 units).
2

The optimum schedule is given by choosing P2 first and yields:

P1 (15 units).
2

It is easily seen (Example 3) that this strategy does not work for more general
programs. Now we consider the case where we have k programs, two of which
are processor bound with respect to each other and the rest of which have only
the restriction that the wait times are not excessive. In this case, the lower bound
can be achieved by assigning a tow priority to the two compute bound programs.
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THEOREM 3. Let P1,’", Pk be programs such that i= 1.2 j-<.l T/.j > maxi=<k
1 <=<=.i ti.i and such that P1 and P2 are processor bound with respect to each other.

, E EThen R(P1, Pk) i<_k <_

Proof. When competition occurs for the processor, assign it to all of the
P3,’", Pk that are in competition before assigning it to either P1 or P. When
only P1 and P2 are in competition, assign the processor based on the rule in
Theorem 2. The first clause in the hypothesis guarantees that no program does
enough waiting to absorb the processor times of P1 and P2, and the proof that
the processor remains busy is an obvious extension of the proof of Theorem 2.
Note that a single processor bound program would also suffice. In fact, it is possible
to consider any set of programs which are processor bound with respect to each
other instead of the two which we used.

4. Conclusions. These results are not surprising to practical programmers.
The algorithms used in [2], [3] and [5] were developed, apparently, strictly on the
basis of intuitition. The results presented here, however, do provide a formal
analysis and some insight into the observed behavior without reference to arbitrary
probabilistic assumptions.

These practical algorithms all work by using the past behavior of the program
to attempt to predict the future behavior of the program. Theorem 3 indicates
that if the future behavior of the program is predicted to be processor bound,
then the program should be given low priority in competing for the processor and
this is what was initially done [5].

Acknowledgment. The author would like to thank Peter J. Denning and the
referees for their constructive comments.
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AN ALGORITHM FOR THE EXTREME RAYS OF A POINTED
CONVEX POLYHEDRAL CONE*

WALTER B. McRAE’f AND ERNEST R. DAVIDSON:I:

Abstract. An algorithm for exhibiting the extreme rays of a pointed convex polyhedral cone is
described. The cone is assumed to be initially defined by a system of homogeneous linear inequalities.
The method differs from prior procedures in two respects. First, faces of lower dimension than facets for
the polar convex cone are used to serially determine the extreme rays; second, the method allows for the
possibility of symmetry considerations involving the extreme rays to reduce storage requirements and
computation effort.

Key words, extreme ray, polyhedral cone, linear programming

1. Introduction. In this paper an algorithmic procedure is described for
exhibiting a complete set of extreme rays for a pointed convex polyhedral cone [1]
which is defined by a system of homogeneous linear inequalities. That is, if {’i}’=
is a set of d-dimensional column vectors whose components define normals to
a set of d-dimensional hyperplanes, then the inequalities ry __> 0 define the co-
ordinates y of points in the polyhedral cone bounded by these hyperplanes. If
the rank of the matrix E (1, ’2 ") is d, the cone is pointed. The problem, then,
is to find the extreme rays y of the cone (i.e., those which are contained in the
intersection of at least d 1 linearly independent hyperplanes and which lie in
the surface of the cone).

An example of this type of problem arises in connection with the Slater
hull problem, which is a limited version of the N-representability problem ([2]-[5]).

(;In one version of the Slater hull problem, the matrix E has columns of dimen-

sion (} Each column is characterized by a different set of N distinct integers

in the range to r. The element ej, [J k + j(j 1)/2 for r >__ j > k _>_ 1] is 1
if k and j are both in the set of N integers and 0 otherwise. The extreme rays
associated with this particular matrix E are far from simplicial. The cone does
have a high degree of symmetry, however, since all columns e are equivalent
under the permutation group on r objects. Even for small integers such as r 9
and N 4, the number of extreme rays for this cone becomes astronomical (> 10a).

For very small values of r and N, the double description algorithm as outlined
by Koler [6] is an efficient way to generate the extreme rays . of E. For slightly
larger dimensions, however, this method fails because it requires simultaneous
generation of all extreme rays. On the CDC 6400 computer, this prevents its
use when the number of . greatly exceeds 104.

As will be discussed in more detail later, many of the extreme rays are
equivalent under the symmetry operations which send E into itself. The double

* Received by the editors April 1, 1972. This research was supported in part by the National
Science Foundation under Grant no. GP-2734.- Department of Chemistry, University of Georgia, Athens, Georgia 30601.

Department of Chemistry, University of Washington, Seattle, Washington 98195.
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description algorithm cannot easily be modified to take account of this simplifica-
tion because this symmetry is not present during the intermediate stages.

The algorithm outlined in this paper, then, is designed to allow easy use of
symmetry and to allow sequential rather than simultaneous generation of extreme
rays. It is generally less efficient than the double description method for problems
where both will work, but it allows results to be generated for problems too large
to handle by the double description procedure.

2. An algorithm for diagonal N-representability.
2.1. Mathematical preliminaries. In the discussion to follow, the symbol, unless specified otherwise, will be used to denote either an element x of an

abstract Euclidean space or the column matrix representation of x relative to
some basis. Moreover, the symbol r will be used to indicate either the scalar
product of two elements x and y of an Euclidean space or their conventional
matrix inner product.

The solution set for a finite system of m linear homogeneous inequalities
in n unknowns constitutes a convex polyhedral cone [1], called the polar cone
of E, which may be symbolized as

() c() {1 >__ 0).

Here Er is an m n matrix whose rows are the normals at the origin to the hyper-
planes bounding the closed half-spaces.

Equation (1), however, is not the only way a convex polyhedral cone may be
characterized. A set C in R" is a convex polyhedral cone if C can be written as the
sum of a finite number of half-lines Li [7, p. 65], i.e., C i= Li.

According to this latter definition, there exists a finite set of elements G
{’i}’= 1, where ’i generates the half-line Li such that

C(G) fie R"lfi (-Di, (-D 0
i=l

If the elements of G are represented as the columns of a matrix C,, then C is given as

(2) C(G) {tSlt5 C,, >__ 0}.
Now by a theorem stated by Weyl [8], if E is a finite set of vectors in R",

then there exists a finite set G in R" such that

(3) C(E) C(G) and C(G)= C(E).

The explicit characterization of the polar cone C(E) is thus given by C(G). The
algorithm developed here for computing G for polyhedral cones C(E) is based
on solving the equation C(G) C(E). In order to exhibit the set G, it is convenient
to restrict the discussion to the case where C(E) is pointed because a pointed
convex polyhedral cone is the convex hull of its extreme rays.

No assumptions are made here concerning the pointedness of the convex cone C(E). In the case,
however, that a positive basis for C(E) is to be used to characterize the interior of the convex hull of the
set E, e.g., in the diagonal N-representability problem, then C(E) must also be pointed.
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In order to describe the algorithm for exhibiting these extreme vectors, the
facial structure of the convex polyhedral cone must be considered.

The algorithm is based, in part, on two well-known results [9, Chap. 3,
Chap. 11.

(I) Each (n- 2)-face F of a convex polyhedral cone C of dimension n is
contained in precisely two facets F1 and F2 of C, and F F1 f’l F2.

(II) If F1 is a face of the convex polyhedral cone C and if F2 is a face of the
convex polyhedral cone F1, then F2 is a face of C.

In the spirit of (I), two facets are set to be adjacent if they contain in common
an (n 2)-face.

2.2. The basic algorithm. The basic iterative procedure of the algorithm
may be given a geometric interpretation based on (I). If a facet of C(E) is known,
then any subfacet within this facet is contained in precisely one adjacent facet.
Hence, if the supporting hyperplane containing the initial facet can be "rotated"
about this subfacet, it may be brought into coincidence with the adjacent facet.

In order to describe this pivotal procedure more precisely, let E be a finite
set of m elements in R"(m >= n) and let y be the normal to a facet F of C(E); then
y satisfies

or

U. q, q_>_o,

(4a) Cr. 0,

(4b) Or > 0,

where C"r is the matrix of rank n 1 whose rows are the rows of Er for which
equality with zero holds, and Or is the matrix constructed from the remaining
rows of Er. If is the element of F normal to the subfacet H of F, then satisfies

(5)

where the rank of rows of Cr on which equality with zero holds is n 2. Here
c denotes the elements Er formed from the submatrix C of E. To show
that such exist, observe that F is the convex polyhedral cone generated as the
positive hull of the elements of E contained in C. Moreover, within the (n 1)-
dimensional linear space determined by the supporting hyperplane normal to y,
F is pointed because the rank of C is n 1.

The normal to the adjacent facet intersecting F in H may be written as
y +/3. Now since is normal to a facet of C(E), for all columns k of E,

necessarily

(6)

Since an adjacent facet exists, there is at least one ,, in C for which ,, > 0.
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Since for every , in C,

(7)

it follows that/ > 0. Similarly, for at least one a, in D,

(8) . . +/. 0.

As qj > 0 for all 0 in D, it follows from (8) that ,/q, -// for at least one
element of D. For every aj in D, necessarily

(9) Oy=qj+fl;0 or -/;/qj.

Hence, if -, and fl q, are chosen so that

(10) ,/q, mip {j/Oj},
D

then (9) will be satisfied for all ; in D. Furthermore, because qj 0 and j 0
for every in C, it follows that -,y + q, satisfies (6) for every in E,
and thus the hyperplane normal to supports C(E). Finally, notice that the
intersection of this hyperplane with C(E) is indeed a facet. It obviously contains
H and hence at least n- 2 linearly independent elements of E. However, the
additional element represented by , that has been included is necessarily linearly
independent of these because if it were not, then y would be zero, contrary to
the fact that , was chosen as a row of D. The intersection thus contains n
linearly independent elements of E and is hence a facet. It will frequently happen
that n in (10) is not uniquely defined because several elements or D give the same
minimum ratio. This is not a problem, however, since every choice of n among
this degenerate set leads to the same facet of C(E).

In order to generate every facet ofa convex polyhedral cone, it will be necessary
to systematically determine each of the subfacets contained in the specified facet.
If these subfacets can be found, the rotation procedure described may be used to
determine each adjacent facet. In addition, if these adjacent facets are accumulated
in a list with the initial facet being the first list item, all facets may be constructed
by moving through the list sequentially and repeating the procedure. Of course,
only those facets generated which are different from the existing list items will
be entered in the list at each iteration. The process of generating all adjacent
facets and comparing them with. a list to determine those which will be retained
may be referred to as scanning. The algorithm ends when the last list item is
scanned without producing new list entries.

The fact that every facet of C(E) is encountered using this procedure follows
because C(E) is taken to be pointed. It is possible to identify a convex polytope
P(E) with C(E) by specifying a normalization for the extreme vectors of C(E).
If the vertices and edges of P(E) are viewed as constituting the vertices and edges
of a graph to be naturally identified with P(E) and hence C(E), the resulting
graph is (n 1)-connected [9, Chap. 3, Chap. 11].

In the context of this polytopal graph, the process of scanning corresponds
to determining all those graph vertices not previously known that are adjacent
to (i.e., possess an edge in common with) that graph vertex identified with the
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facet of C(E) being scanned. Furthermore, rotating about one subfacet in each
of a sequence of adjacent facets specifies a sequence of adjacent vertices in the
graph known as a path. Because the polytopal graph is connected, such a path
exists connecting any two vertices. Hence missing a facet of C(E) is impossible
because this would require that the associated graph vertex either be isolated
or be an element of a component of the graph which is disconnected from that
component containing the vertices which have been encountered in scanning.

2.3. Generation of subfaces. The essential feature of the procedure used for
exhibiting each of the subfacets in a particular facet may be illustrated by con-
sidering the more general problem of determining a complete set of extreme
rays for a pointed convex polyhedral cone (in an (n- p)-dimensional space)
defined as the intersection of p (p < n) orthogonal hyperplanes,

H,, {ff R"lfi 0}, m 1,..., p,

and q closed half-spaces,

H, {R"[ff=>0}, n 1,...,q,

where it is assumed that the vectors %, m 1,..., p, are linearly independent
of the vectors b,, n 1, ..., q.

In other words, this convex cone is the solution set to the system of equations

(11)
0

where B O, with B the q x n matrix whose rows are the components of the
vectors , and the p x n matrix whose rows are the components of the vectors

tim" Let us denote this convex cone by CA(B) and observe that CA(B) is polar to
the convex cone CA(B) generated as the positive hull of the elements in R" repre-
sented by the rows of B. Moreover, both of these convex cones reside in the
(n p)-dimensional linear space determined as the intersection of the specified
p orthogonal hyperplanes.

For the purpose of exhibiting a complete set of extreme vectors for CA(B),

considerfirstthecasethatp+q-n. Inthiscase, thematrix _-I isnecessarily

nonsingular if CA(B) is pointed. Hence, letting be the inverse matrix and
any element of CA(B), observe that

0
U
B

U E ili+ p’

where i represents column of U. Thus in this simple case, the last q columns
of U constitute a positive basis for A(B) and represent a complete set of extreme
vectors. In this case, CA(B) and CA(B) are called simplicial.

The other case to consider in this context occurs when p + q m with

m > n. The rank of the matrix
B

is still necessarily n if CA(B) is pointed. Thus
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let U be a generalized inverse, i.e., let U be an m x m nonsingular matrix satisfying

J,[ iI,, I,
-1UB O’ 0 B’

where I, is the n x n identity matrix. If is any element of Ca(B), then_
uouB= >=o.

0

If U is now partitioned as

R
u=

) ,
where R, T, Q and S are, respectively, n x p, n x q, (m- n) x p and (m- n) x q
matrices, then clearly

0 0

Hence for any in CA(B), the associated vector f/must satisfy the homogeneous
system of equations

(12) SO 0

in addition to the necessary nonnegative condition

(3) O _-> o.
Conversely, for any g/satisfying (12) and (13) it is easily demonstrated that if

(14)

then satisfies (11). Observe, however, that the solution set to (12) and (13) is
the convex polyhedral cone resulting from the intersection of the positive orthant
in a q-dimensional Euclidean space and the m n hyperplanes defined by (12).
Denoting this convex cone by C(r/), it is easily verified that the linear transforma-
tion in (14) defines a one-to-one correspondence preserving dimension between
faces of ’(r/) and A(B). Thus C’(r/) is a pointed convex cone of dimension n p.
Moreover, an element of CA(B is an extreme vector if and only if the image of
this element is an extreme vector for C(r/). Thus a complete set of extreme vectors
for CA(B may be obtained as the images of a complete set of extreme vectors for
C(q). The task of exhibiting such a set for this latter convex cone is, however, a
tractable problem using established procedures if the number of extreme rays is
not too large (less than 10,000 for a CDC 6400 computer). Specifically, the
algorithm developed by Kohler [6], which is a variant of the double description
procedure of Motzkin [10], may be used for this purpose.

2.4. Imbedding sequence for subfaces. Practically, then, a complete set of
extreme vectors can be exhibited for a convex polyhedral cone defined according
to (11) if the set is not too large. This result may be used to develop the procedure
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for determining each of the subfacets contained in a specified facet of the convex
cone C(E) in R".

In general terms, the procedure utilizes the fact that any face of C(E) is a
convex polyhedral cone to construct a sequence of faces of C(E) satisfying the
imbedding condition,

Fk Fk+l F 2 F,

where F is any facet and F is some k-face. A unique normal at the origin to any
face in this sequence may be determined to within a multiplicative constant by
requiring that this vector be orthogonal to the normal to each face of greater
dimension. It is easily seen that the k-dimensional linear space resulting from the
intersection of the orthogonal hyperplanes determined by each of these normals
contains F. This result is readily cast in the format of (11); and because the polar
F is pointed in this linear space, either a matrix inversion or the double descrip-
tion method may be used to determine a normal to each facet of F where the
facets of Fk are just the (k 1)-faces of C(E) contained in F. The normals con-
structed in this manner are then used in conjunction with the rotation procedure
described to generate a list of normals to the k-faces adjacent to F which still are
imbedded in F+1 F. The process then continues by scanning this list
to eventually generate the normals to every k-face of F + 1. The normals to the
facets of Fk + are then used to generate normals to each (k + 1)-face adjacent to
F+ 1. If this list is then scanned, normals to each (k + 1)-face in F+ 2 may be
obtained, and so on, until eventually normals to each subfacet in F are obtained.

At each stage, when the search for faces adjacent to F is begun, all faces of
lower dimension left from the scan of the previous F are invalid and must be
discarded. Ideally, at each stage, a program would select the best one of the three
possible ways of finding the imbedded Fa- faces. If Fa is simplicial, the Fa-

can best be found by inverting a matrix. If Fa has few enough facets, the double
description procedure can be used to find them all simultaneously. Finally, if
Fa has many facets, a scanning procedure can be initiated to find them sequentially.
The algorithm, as actually implemented, applied the double description method
to find the faces of F"-3.

A feature of this algorithm which requires emphasis is the fact that the scan
of the lists associated with faces of lower dimension need not be completed in
order to generate some elements for the lists associated with faces of higher
dimension. Admittedly, there will be no assurance that any of the lists are complete
if this is done; nonetheless, it is an important capability in view of the symmetry
considerations to be discussed in the next section.

2.5. Initial faces. To conclude 2, a brief description of the method used to
find an initial facet is given. This procedure is required not only for the purpose
of constructing an initial sequence of imbedded faces, but also in the scanning
process whenever it is necessary to find an initial subface of a F face.

Several investigators have considered the problem of constructing a solution
to a system of inequalities [11], 12], but in general, the treatments given have
been within a context where only nonnegative solutions are considered and where
the system of inequalities is necessarily presumed to be inhomogeneous. These
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restrictions present no great difficulty, however, because the homogeneous
inequalities encountered in the case of a pointed convex polyhedral cone are
easily transformed to meet these conditions.

With reference to the requirements of the algorithm discussed, consider a
system of linear inequalities of the form

(15) A

0

where is an m x n (m >= n) matrix ofrank n and where the vectors .i, 1, ..., k,
are linearly independent. In order to convert this system to an inhomogeneous
one, observe that if 7z is any nonzero solution to (15), and 1, is a row matrix of
l’s, then necessarily

IA vz q >0,
i=1 i=1

where fii represents row of/. This strict inequality for any solution other than
zero may be written because the solution set under the given conditions on A
constitutes a pointed convex polyhedral cone, (i.e., no vector exists which is
orthogonal to all the rows of , because the rank of/] is n). It also follows from
this fact that for any , 4= 0, a fixed arbitrary positive value for may be chosen;
hence let for all Y. : 0. Finally, notice that for any satisfying (15), obviously

Thus if ei, the following equivalent inhomogeneous inequalities may be
considered"

(16) A’2

0

r/>0, /3 1.

These inequalities may now be converted to an equivalent system of inhomo-
geneous inequalities for which a nonnegative solution is sought by utilizing the
fact that the rank of A is maximal. Thus the vectors i, i= 1,..., k, may be
augmented with n k rows of C to form a set of n linearly independent vectors.
Letting V be the nonsingular matrix generated from these vectors, (22) may be
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written as

0

where B represents the m n + k rows of C not in V, and 8 corresponds to the
rows of C in V. If U is the matrix inverse to V, then

where ff -1 and -- The last matrix equality requires that ff be

nonnegative with the first k components identically zero. Hence the reduced
system of inequalities becomes

>=0, 3>= 1, ’0,

where D’ is the matrix obtained from D be deleting the first k columns and if’
represents the last n k components of ft.

The inequalities in (17), (or, more accurately, the transpose of this system)
are exactly the type of linear inequalities for which the ingenious lexicographic
procedure of Gale [12] is designed to construct a basic solution. This is the pro-
cedure which has been utilized in the algorithm with only minor modifications
in the pivotal steps to eliminate the necessity of divisions.

2.6. Symmetry considerations. The role of permutational symmetry in the
diagonal N-representability problem is considerable. In fact it is the presence
of this symmetry which makes the algorithm described here (when modified to
account for this property) particularly applicable to this problem 13]. For the
purpose of this paper, however, the only assumption concerning symmetry which
will be made is that there exists a finite group G defined over R" which is homo-
morphic to the permutation group of the finite set E which positively spans C(E).
As a consequence ofthis assumption 14, pp. 181-186], the set E may be decomposed
exhaustively into equivalence classes with respect to G. Here by an equivalence
class is meant a subset of E (possibly E itself) consisting of those elements in E
which are equivalent under G, where C and ’ in E are said to be equivalent (under
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G) if there exists some P in G such that P, ". Observe that knowledge of one
element in an equivalence class is sufficient to obtain all other elements.

The faces of C(E) may also be categorized into equivalence classes, and hence
only one representative face of each equivalence class need be retained in order
to completely characterize the facial structure of C(E). More important for the
purposes of the algorithm, however, is the fact that when scanning a specified
k-face, it is only necessary to rotate about one representative for each equivalence
class (defined relative to a subgroup G(F’) of G) of (k 1)-faces in this k-face in
order to generate one representative for each equivalence class of the adjacent
k-faces. This has the obvious consequence of reducing the number of items in
the lists associated with the algorithm if the scanning process is modified so that
only normals which are not equivalent are retained. This modification, of course,
requires a procedure for determining when two normals in a prescribed normaliza-
tion are not equivalent, and this may be a very difficult problem if the order of
the group G is large. For example, in the diagonal N-representability problem,
introducing this capability required development of a constructive procedure for
determining when two square matrices A and B were related according to

PBP, where P is a permutation matrix. Because this problem is essentially
equivalent to determining when two finite graphs are isomorphic, a detailed
account of the procedure will be given in a subsequent paper.

In order to demonstrate that the existence of G does in fact induce equivalence
class structure on the faces of C(E), consider first the facets. If P is the matrix
identified with a member P of G in an orthogonal representation and Q is the
permutation matrix identified with a corresponding element of the permutation
group on E under the aforementioned homomorphism, then EQ PE. If . is
the normal to any facet of C(E), it follows that

QE’ q, q > o, Py,
or

E C)q, C)q >_- 0.

If C’(.) is the submatrix of E for which Cy 0, then PC is the corresponding
matrix for 2. The fact that 2 is a basic solution is then easily shown if its is recalled
that the rank of matrix is invariant to multiplication by a nonsingular matrix.
Hence is normal to a facet of C(E) and the set of solutions {1 P, P G)
defines an equivalence class of facets.

A useful definition of the equivalence class structure of the faces of dimen-
sion lower than facets within the context of the imbedding sequence may be
illustrated by considering the (n- 3)-faces contained in a given (n- 2)-face
which in turn is contained in a facet of C(E). If y is a normal to the facet and
2 a normal in this facet to the subfacet then, according to the construction in
the algorithm, a normal Y3 to an (n 3)-face in the given subfacet satisfies

o

3 0 0.
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Here it is to be recalled that Cr is the matrix whose rows are the representations
of the elements of the subset C of E whose positive hull is the specified subfacet,
i.e., Cr is the submatrix of rows of Er satisfying Cry1 Cry2 O.

Analogous to the manner in which an equivalence class was exhibited for
the facets of C(E), an equivalence class of (n 3)-faces in this subfacet, charac-
terized by Y3 as a representative element, may be constructed if a subgroup of
G is determined which is homomorphic to the permutation group of the set C.
Such a group is the subset G"-2 of G consisting of those elements of G which
leave Y and 2 invariant, i.e., for any P in G"-2,

and PY2 .2.
Equivalently, G"-2 may be regarded as the subgroup of G"-1 which sends F"-2
into itself. The fact that the image of any element in C under a member of G"-2
is also in C is easily established. Letting Or be any row of Cr and P the matrix
associated with a member of G"-2 in an orthogonal representation, then we have

and similarly,

0 ’ry OrprPyl (P’)rl,

(P’)ry2 0,

Hence (p,)r is a row of Er which is contained in C. Analogous arguments can be
used to define equivalence classes for the (k 1)-faces or their normals in any
k-face. Thus for the imbedding sequence, Fk c Fk+l c F"-1, the subgroups
are also imbedded as G+1 G. The equivalence class of F relative to
Gk+l is defined as {FkI(Fk) PC(F]), P Gk+ 1}.

Finally, in order to illustrate why one one representative from each equi-
valence class for the k-faces contained in a specified (k + 1)-face need be retained
in order to generate at least one representative for each of the equivalence classes
characterizing adjacent (k + 1)-faces, the preceding example may be used to
show that any two normals to (n 3)-faces in the same equivalence class give
rise necessarily to equivalent (n 2)-faces.

Assume that 7z 3 and 3 satisfy (5), where ’3 =/(= 3 and where PY3 Y2,
3 .3, P Gn-2 then for some and/3 determined by the rotation procedure
previously described, the vector e2 + fl3 is normal to an (n- 2)-face
adjacent to that determined by 2. Observe, however, that

--(XY2 "+" tiPS3

oPY2 + BP53
P(o@2 q- fl53)
po

By construction, for any P in G"-2, necessarily Pa 1, and hence r 0.
Moreover, since P e G"-2 c G"-1, the elements of E in the facet determined by
.1 are merely permuted by P, and hence is a normal in this facet to an adjacent
subfacet. Furthermore, because only two facets intersect in each subfacet, is
the only normal which may be obtained from Y2 and 3. Extending this result to
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faces of general dimension, the conclusion follows that normals to inequivalent
(k + 1)-faces under G + 2 adjacent to a specified (k + 1)-face can arise only from
rotations about inequivalent k-faces under Gk+l within the given (k + 1)-face.
The converse of this statement does not hold, however, as equivalent (k + 1)-faces
(under G + 2) may arise from inequivalent k-faces (under G + 1).

When rotation has been carried out about one representative element for
each equivalence class of k-faces contained in a (k + 1)-face, there can exist no
adjacent (k + 1)-face which is not equivalent to those adjacent (k + 1)-faces
generated in scanning the specified k-face. To show this, assume such an in-
equivalent adjacent (k + 1)-face exists. Necessarily, this adjacent (k + 1)-face
contains a k-face in common with the specified (k + 1)-face. However this k-face
must be an element of one of the characteristic equivalence classes for the k-faces
in the original (k + 1)-face. Thus by the preceding result, the (k + 1)-face obtained
by rotation was carried out about the k-face representing the appropriate equi-
valence class. Hence by contradiction, the assumed inequivalent adjacent (k + 1)-
face cannot exist.

For the general group G, comparison of the list of known with a new
can be facilitated if a standard element of each equivalence class can be defined
and kept in the list. One definition of this standard element for small groups
might be the lexographically largest element of the equivalence class. That is,
for {1 Py, P G}, define o max , where 1 > 2 if zi, Zi, 2 for all /less
than j, and zj,1 > zj, z ( exceeds 2 in the first element in which they differ). In
general, 0 can only be found by generating the whole equivalence class of y.
Clearly two elements are in the same equivalence class if and only if their standard
elements are the same.

3. Discussion. A computerized version of this algorithm has been prepared
and applied to several elementary fermion and boson diagonal N-representability
problems. The results of these calculations have been reported elsewhere [13].
In the most complex case considered (r 9, N 5) the matrix E had dimension
36 126. About 30 hours of CDC 6400 computer time was spent to find the
adjacent facets to 195 of the facets. In this way, 1089 equivalence classes were
found which contained 2.3 108 facets. For the simple cases (r,N)= (3, 6),
(3, 7), (3, 8) the dimensions of E are (15, 20), (21, 35), (28, 56). The rotation algorithm
required 4.3, 58.5, and 80.9 seconds per equivalence class, respectively, or 0.25,
0.46; and 0.030 seconds per facet. By comparison, the double description algorithm
required only 0.04 and 0.17 seconds per facet for the first two cases, but this method
was not feasible for the 52,000 facets of the third case.

In any particular application the choice of the minimum dimension for
scanning (or, indeed, whether to use the double description method directly for
the facets) must be based on expediency. As mentioned previously, the double
description method is superior in the absence of symmetry when the expected
number of extreme rays is small enough that they can all be kept in a computer at
once. With some modifications for using disk storage, the amount of core-storage
required can be kept small at the cost of extensive input-output. For the problems
for which this new algorithm was designed, the extreme vectors had dimensions
in the range of 20-40 and were expected to exceed 106 in number. Hence, even
disk storage was not large enough to hold all of them at once.
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The inefficiency in the scanning procedure described here arises because
every facet is generated many times. If there are K facets with an average of L
subfacets, then the process of scanning will generate each facet an average of L
times. Since L is at least n- 1, for high dimensions the process becomes very
inefficient.

If high symmetry is present, the situation may be reversed. Suppose each
equivalence class contains an average of R facets. Then scanning one element
of each equivalence class will produce only KL/R facets. While it is true that only
K/R of these are needed, if L/R is much smaller than unity the scanning procedure
will become more efficient than the double description algorithm which always
generates K facets.

Because of the descent in symmetry and the decrease in the number of
adjacent faces as the scanning procedure is carried to lower dimensional faces,
beyond some face of minimum dimension the use of the double description
method becomes preferred. Ideally this should be dynamically adjusted by the
program itself.
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SET MERGING ALGORITHMS*

J. E. HOPCROFT" AND J. D. ULLMAN{

Abstract. This paper considers the problem of merging sets formed from a total of n items in such
a way that at any time, the name of a set containing a given item can be ascertained. Two algorithms
using different data structures are discussed. The execution times of both algorithms are bounded by a
constant times nG(n), where G(n) is a function whose asymptotic growth rate is less than that of any
finite number of logarithms of n.

Key words, algorithm, algorithmic analysis, computational complexity, data structure, equivalence
algorithm, merging, property grammar, set, spanning tree

1. Introduction. Let us consider the problem of efficiently merging sets
according to an initially unknown sequence of instructions, while at the same time
being able to determine the set containing a given element rapidly. This problem
appears as the essential part of several less abstract problems. For example, in [13
the problem of "equivalencing" symbolic addresses by an assembler was con-
sidered. Initially, each name is in a set by itself, i.e., it is equivalent to no other
name. An assembly language statement that sets name A equivalent to name B by
implication makes C equivalent to D if A and C were equivalent and B and D
were likewise equivalent. Thus, to make A and B equivalent, we must find the
sets (equivalence classes) of which A and B are currently members and merge
these sets, i.e., replace them by their union.

Another setting for this problem is the construction of spanning trees for an
undirected graph [2]. Initially, each vertex is in a set (connected component) by
itself. We find edges (n, m) by some strategy and determine the connected compo-
nents containing n and m. If these differ, we add (n, m) to the tree being constructed
and merge the components containing n and m, which now are connected by the
tree being formed. If n and m are already in the same component, we throw away
(n, m)and find a new edge.

A third application [33 is the implementation of property grammars I43, and
many others suggest themselves when it is realized that the task we discuss here
can be done in less than O(n log n) time.

By way of introduction, let us consider some of the more obvious data struc-
tures whereby objects could be kept in disjoint sets, these sets could be merged, and
the name of the set containing a given object could be determined. One possibility
is to represent each set by a tree. Each vertex of the tree would correspond to an
object in the set. Each object would have a pointer to the vertex representing it,
and each vertex would have a pointer to its father. If the vertex is a root, however,
the pointer would be zero to indicate the absence of a father. The name of the set
is attached to the root.
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Given the roots of two trees, one can replace the representation of two sets
by a representation for their union by making the pointer at one root point to the
other root and, if necessary, updating the name at the root of the combined tree.
Thus two structures can be merged in a fixed number of steps, independent of the
size of the sets. The name of the set containing a given object can be found, given the
vertex corresponding to the object, by following pointers to the root.

However, by starting with n trees, each consisting of a single vertex, and suc-
cessively merging the trees together until a single tree is obtained, it is possible to
obtain a representation for a set of size n, which consists of a chain of n vertices.
Thus, in the worst case, it requires time proportional to the size of the set to deter-
mine which set an object is in.

For purposes of comparison, assume that initially there are n sets, each con-
taining exactly one object, and that sets are merged in some order until all items
are in one set. Interspersed with the mergers are n instructions to find the set
containing a given object. Then the tree structure defined above has a total cost
of n for the merging operation and a cost bounded by n for determining which set
contains a given object (total cost n2 for n look ups).

Methods based on maintaining balanced trees (see [5], e.g.) have a total cost of
n log n for the merging operations and a cost bounded by log n for determining
which set contains a given object (total cost n log n for n look ups).

A distinct approach is to use a linear array to indicate which set contains a
given object. This strategy makes the task of determining which set contains a
given object finite. By renaming the smaller of the two sets in the merging process,
the total cost of merging can be bounded by n log n.

A more sophisticated version of the linear array replaces the set names in
the array by pointers to header elements. This method, based on the work of
Stearns and Rosenkrantz [3], uses nloglog log(n) steps for the merging

k
process and a fixed number of steps independent of n for determining which set
contains a given element. Here k is a parameter of the method and can be any
fixed integer.

In what follows, we shall make use of a very rapidly growing function and a
very slowly growing function which we define here. Let F(n) be defined by

F(0)-- 1,

F(i) F(i- 1)2F(i-x) for i>__ 1.

The first five values of F are 1, 2, 8, 2048 and 22059.
The slowly growing function G(n) is defined for n => 0 to be the least number

k such that F(k) >= n. Both set merging algorithms presented here have asymptotic
growth rates of at most O(nG(n)).

Initially, let Si {i}, 1 __< =< n. The Si’s are set names. Given a sequence of
two types of instructions,

(i) MERGE(i, j), (ii) FIND(i),

where andj are distinct integers between and n, we wish to execute the sequence
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from left to right as follows. Each time an instruction of the form MERGE(i, j)
occurs, replace sets Si and Sj by the set Si U Sj and call the resulting set Sj. Each
time an instruction of the form FIND(i) occurs, print the name of the set currently
containing the integer i. It is assumed that the length of the sequence of instructions
is bounded by a constant times n. Both set merging algorithms presented here have
asymptotic growth rates bounded by nG(n). The first algorithm actually requires
nG(n) steps tbr certain sequences. For the second algorithm, it is unknown whether
riG(n) is in fact its worst case performance. Recently, Tarjan [6_ has shown the
algorithm to be worse than O(n).

2. The first set merging algorithm. The first set merging algorithm represents
a set by a data structure which is a generalization of that used in 3] to implement
property grammars. The basic structure is a tree similar to that shown in Fig. 1,
where the elements of the set are stored at the leaves of the tree. Links are assumed
to point in both directions.

level 4

level 3

level 2

level

level 0

"22048

56 sons

FIG. 1. Data structure for set representation

sons

Each vertex at level i, 1, has between one and 2v- 1) sons and thus at
most F(i) descendants which are leaves. We define a complete vertex as follows"

(i) Any vertex at level 0 is complete.
(ii) A vertex at level > is complete if and only if it has 2v(- 1) sons, all of

which are complete.
Otherwise, a vertex is incomplete.

The data structure is always maintained, so that no vertex has more than one
incomplete son. Furthermore, the incomplete son, if it exists, will always be
leftmost, so it may be easily found. Attached to each vertex is the level number, the
number of sons, and the number of descendant leaves. The name of the set is
attached to the root.

The procedure COMBINE, given below, takes two data structures of the
same level and combines them to produce a single structure of level 1. If there are
too many leaves for a structure of level 1, then COMBINE produces two structures
of level l, one with a complete root and one with the remaining leaves. To simplify
understanding of the algorithm, the updating of set names, level numbers, number
of sons and the number of descendant leaves for each vertex has been omitted.

Procedure COMBINE (s s2).
Assume without loss of generality that s2 has no more sons than s (otherwise

permute the arguments).
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1. If both s and s2 have incomplete sons, say v and/)2, then call COMBINE
(v, v2). On completion of this recursive call of COMBINE, the original data
structure is modified as follows. If originally the total number of leaves on the
subtrees with roots v and v2 did not exceed the number of leaves for a complete
subtree, then the new subtree with root v contains all leaves of the original two
subtrees. The new subtree with root v2 consists only of the vertex v2.

If originally the total number of leaves exceeded the number for a complete
subtree, then the new subtree with root v is a complete subtree whose leaves are
former leaves of the original subtrees with roots v and re, and the new subtree with
root v2 is an incomplete subtree with the remaining leaves. If on completion of the
recursive call of COMBINE, vertex v2 has no sons, then delete vertex v2 from the
data structure.

2. Make sons of s2 be sons of s, until either s2 has no more sons or s has
2V(l- 1) sons.

3. If s2 still has sons, then interchange the lone incomplete vertex at level
1, if any, with the leftmost son of s2. Otherwise, interchange the incomplete

vertex with the leftmost son of S l.

We now consider the first algorithm for the MERGE-FIND problem.
ALGORITHM 1.
1. Initially n vertices numbered to n are created and treated as structures

of level 0. Each vertex has information giving the name of its set, its number of
descendant leaves (1), its level (0) and the number of its sons (0). A linear array of
size n is created, such that the ith cell contains a pointer to vertex i.

2. The sequence of instructions of the forms MERGE(i,j) and FIND(i)
are processed in order of occurrence.

(a) For an instruction of the form FIND(i), go to the ith cell of the array,
then to the vertex pointed to by that cell, then proceed from the
vertex to the root and print the name at the root.

(b) For an instruction of the form MERGE(i, j), if the roots for struc-
tures and j are not of the same level, then add a chain of vertices
above the root of lower level so that the roots of the two rees will
have the same level. Let sl and sz be the two roots. Execute COM-
BINE(s1, s2). If after the execution of COMBINE s2 has no sons,
then discard s2 and we are finished. Otherwise, create a new vertex
whose left son is s and whose right son is s2.

We now show that Algorithm 1 requires time bounded by a constant times
nG(n), provided that the length of the sequence of instructions is itself first bounded
by a constant times n. The first step is to observe that Algorithm preserves the
property that at most one son of any vertex is incomplete.

LEMMA 1. At any time during the stimulation of a sequence of MERGE and
FIND instructions by Algorithm 1, each vertex has at most one incomplete son.
Furthermore, the incomplete son, if it exists, will always be leftmost.

Proof The proofproceeds by induction on the number ofMERGE instructions
simulated. The basis zero is trivial, since each leaf is complete by definition.

For the inductive step, we observe by induction on the number of applications
of COMBINE that applying COMBINE to two trees, each of which have the
desired property, will result in either producing a single tree with the desired
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property plus a single vertex or producing a complete tree plus another tree with
the desired property. Thus, no call of COMBINE can give a vertex two incomplete
sons if no vertex had two such sons previously. Furthermore, if two trees are
produced, neither consisting of a single vertex, then one must be complete.

As a consequence of the above observation, if a new vertex with sons S and s2
is created in step 2(b) of Algorithm 1, the subtree with root S is complete, and the
property holds for the new vertex.

LEMMA 2. If we begin with n objects, no vertex created during Algorithm 1 has
level greater than G(n).

Proof If there were such a vertex v, it could only be created in step 2(b). It
would, by Lemma 1, have a complete descendant at level G(n). An easy induction
on shows that a complete vertex at level has F(l) descendant leaves. Thus, v
has at least F(G(n)) + descendant leaves, which implies F(G(n)) + 1 <= n. The
latter is false by definition of G.

THEOREM 1. If Algorithm 1 is executed on n objects and a sequence of at most

m MERGE and FIND instructions, rn >= n, then the time spent is O(mG(n)).
Proof By Lemma 2, each FIND may be executed in O(G(n)) steps, for a total

cost of O(rnG(n)) for the FIND’s. Since there can be at most n MERGE’s,
the cost of simulating the MERGE operations, exclusive of calls to COMBINE,
is O(n). Moreover, by Lemma 2, each MERGE can result in at most G(n) recursive
calls to COMBINE, as each call is with a pair of vertices at a lower level than
previously. Thus, the cost of all calls to COMBINE is O(nG(n)) plus the cost of
shifting vertices from one father to another in step 2 of COMBINE.

It remains only to show that the total number of shifts of vertices over all
calls of COMBINE is bounded by a constant times nG(n). In executing an in-
struction MERGE(s1, s2), no more than G(n) incomplete vertices are shifted, at
most one at each level. Thus we need only count shifts of complete vertices.

Consider step 2 of COMBINE. The new subtree with root s2 is referred to as
the CARRY unless the subtree consists solely of the vertex v2 in which case we
say, "there is no CARRY." The new subtree with root s is referred to as the
RESULT. The number of shifts of complete vertices is counted as follows. If a
complete vertex is shifted, and there is no CARRY at this execution of COMBINE,
charge the cost to the vertex shifted. If there is a CARRY, set the cost of each vertex
in the CARRY to zero, and distribute the cost uniformly among the vertices in tlae
RESULT.

Each time a vertex is moved, either its new father has at least twice as many
sons as its old father, or there is a CARRY. Thus, a vertex at level is moved at
most F(i) times before a CARRY is produced. Once a CARRY is produced, the root
of the RESULT is complete, and its sons are never moved again. Hence, a vertex at
level can accumulate a cost of at most 2F(i), that is, F(i) due to charges to itself
and F(i) for its share of the costs previously charged to the sons of the root of
CARRY.

To compute the total cost of shifting complete vertices, note that a complete
vertex at level has F(i) descendant leaves. Redistribute the cost of each complete
vertex uniformly among its descendant leaves. Since no leaf has more than G(n)
ancestors, the cost charged to any leaf is bounded by 2G(n). Hence, the complete
cost of moving vertices is O(nG(n)). Since m >_ n is assumed, we have our result.
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COROLLARY. If we may assume m <= an for somefixed constant a, then Algorithm
1 is O(nG(n)).

It should be observed that the set merging algorithm can be modified to
handle a problem which is in some sense the inverse of set merging. Initially given
a set consisting of integers 1, 2, ..., n}, execute a sequence of two types of in-
structions"

(i) PARTITION(i), (ii) FIND(i),
where is an integer between and n. Each time an instruction of the form PAR-
TITION(i) occurs, replace the set S containing into two sets"

S {jlj e S and j __< i},

$2 {jlj e S and j > i}.

Each set is named by the largest integer in the set. Each time an instruction of the
form FIND(i) occurs, print the name of the set currently containing the integer i.
To handle this partitioning problem, use the same data structure as before, but
start with a single tree with n leaves. The leaves in order from left to right corres-
pond to the integers from to n. To execute PARTITION(i), start at the leaf
corresponding to the integer and traverse a path to the root ofthe tree to partition
the tree into two trees.

All vertices to the left of the path are placed on one tree, all vertices to the right
of the path are placed on the other. Vertices on the path are replaced by two
vertices, one for each subtree, unless the vertex is the rightmost descendant leaf
of the vertex, in which case the vertex is placed on the left subtree. Assume that
vertices v and w are on the path and w is a son of v. The sons of v are partitioned
as follows. Simultaneously, start counting the sons of v to the left of w, including w,
starting with the leftmost son of v, and start counting the sons of v to the right of w.
Cease counting as soon as one of the two counts is complete. (The reason for the
simultaneous counting is to make the cost of counting proportional to the smaller
of the two counts.) The sons of v can now be partitioned at a cost proportional to
the smaller of the two sets by moving the smaller number of sons.

The analysis of the running time is similar to that of the set merging algorithm,
and thus only a brief sketch is given. Note that a vertex can have at most two
incomplete sons, only one of which can be moved in the execution of any PAR-
TITION instruction. Thus at most G(n) incomplete vertices are moved in executing
one PARTITION instruction.

To bound the cost of moving a complete vertex, note that each time a vertex
is moved, its new father has at most half as many sons as the old father. Thus a
vertex at level can be moved at most F(i) times. Since a complete vertex at level
has F(i) leaves, distributing to its leaves the cost of all moves of a given vertex while
it is complete gives at most a cost of one to each of its leaves. Since a leaf has at most
G(n) ancestors, the cost of moving all complete vertices is bounded by riG(n).

3. The second set merging algorithm. We now consider a second algorithm
to simulate a sequence of MERGE and FIND instructions.

This algorithm also uses a tree data structure to represent a set. But here,
all vertices of the tree, rather than just the leaves, correspond to elements in the set.
Moreover, tree links point only from son to father.
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ALGORITHM 2.
1. Initially each set {i}, __< =< n, is represented by a tree consisting of a

single vertex with the name of the set at the vertex.
2. To merge two sets, the corresponding trees are merged by making the root

of the tree with fewer vertices a son of the root of the other tree. Ties can be broken
arbitrarily. Attach the appropriate name to the remaining root.

3. To execute FIND(i), follow the path from vertex to the root of its tree and
print the name of the set. Make each vertex encountered on the path a son of the
root. (This is where the algorithm differs substantially from balanced tree schemes !)

The above algorithm, except for the balancing feature of merging small
trees into large, was suggested by Knuth 7] and is attributed by him to Tritter.
The entire algorithm, including this feature, was implemented by McIlroy [2]
and Morris in a spanning tree algorithm. The analysis of the algorithm without
the balancing feature was completed by Fischer 8], who showed that O(n log n)
is a lower bound, and Paterson [93, who showed it to be an upper bound. Our
analysis shows that the algorithm with the balancing scheme is O(nG(n)) at worst.
Thus it is substantially better than the one without the balancing.

We now introduce certain concepts needed to analyze Algorithm 2. Let be a
fixed sequence of MERGE and FIND instructions. Let v be a vertex. Define the
rank of v, with respect to , denoted R(v), as follows. If in the execution of by
Algorithm 2, v never receives a son, then R(v) 0. If v receives sons v l, v2, ".’, Vk
at any time during the execution, then the rank of v is max {R(vi)} + 1. It is not
hard to prove that the rank of v is equal to the length of the longest path from v
to a descendant leaf in the tree that would occur if the FIND instructions and
their attendant movement of vertices were ignored in the execution of .

LEMMA 3. If the rank of v with respect to is r, then at some time during the
execution of , v was the root of a tree with at least 2 vertices.

Proof The proof is by induction on the value of r. The case r 0 is trivial.
Assume the lemma to be true for all values up to r 1, r _>_ 1. If v is of rank r, at
some point v must become the father of some vertex u of rank r 1. This event
could not occur during a FIND, for if it did, then u would have previously been a
descendant of v with some vertex w between them. But then w is of rank at least r
and v of rank at least r + 1 by the definition of rank.

Thus, u must be the root of a tree T which is merged with a tree T’ having root
v. By the inductive hypothesis, T has at least 2 vertices, since a root cannot lose
descendants and a nonroot cannot gain descendants, and hereafter u will no longer
be a root. By step 2 of Algorithm 2, T’ has at least as many descendants as T. The
resulting tree has at least 2’ vertices and has v as root.

LEMMA 4. Each time a vertex v gets a new father w during the execution of
Algorithm 2, that father has a rank higher than any previous father u :/: w of v.

Proof If v, formerly a son of u, becomes a son of w, it must be during a FIND.
Then w is an ancestor of u and hence of higher rank by definition.

LEMMA 5. For each vertex v and rank r, there is at most one vertex u of rank r
which is ever an ancestor of v.

Proof Suppose there were two such u’s, say u and u2. Assume, without loss of
generality, that v first becomes a descendant of u 1. Then u2 is of higher rank than
u by Lemma 4 and the fact that at all times, paths up trees are of monotonically
increasing rank. This contradicts the assumption that U and u2 were of rank r.
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LEMMA 6. There are at most n/2 vertices of rank r.

Proo[i Each vertex of rank r at some point is the root of a tree with at least 2
vertices by Lemma 3. No vertex could be the descendant of two vertices of rank r
by Lemma 5. This implies that there are at most n/2 vertices of rank r.

For j >= 1, define aj, the j-th rank group, as follows "
a {vllog+ l(n) < R(v) <__ log(n)}.

Note that the higher the rank group, the lower the ranks of the vertices it contains.
LFMMA 7. laj[ _--< 2n/logJ(n).
Proof Since there are at most n/2 vertices of rank r, we have

logJn F/ 2n
]ajl =< Z 2--/ < ]ogJn (1 + 1/2 + 1/4 + ") <

i-- logo/+ in logjn

LEMMA 8. Each vertex is in some o for <= j <= G(n) + 1.

Proof By Lemma 6, no vertex has rank greater than log n, so j >__ may be
assumed. Thus to prove j <__ G(n) + 1, we need only show that logcs(")+z(n) < 0.
From the definition of G(n), n <_ F(G(n)), and so

loga(,) + 2(n __< loga(,)+ 2 F(G(n)).

Thus it suffices to show that logi+2F(i) < 0. We shall actually show that logi+ 22F(i)
=< 0. The proof is by induction on i. For 0, the result is obvious. Assume the
induction hypothesis true up to i- 1. Then logi+22F(i)<= logi+l(1 + log F(i))

logi+ 1(1 + log F(i 1) + F(i 1)), which is less than or equal to logi+ 2F(i 1),
since F(i 1) > for > and since log x < x for integer x >_ 1. Thus by the
inductive hypothesis, logi+Z2F(i) =< 0. From this it follows that log+ F(i) < O,
and the proof is complete.

THZORFM 2. Given n >= 2 objects, the time necessary to execute any sequence of
m > n MERGE and FIND instructions on these objects by Algorithm 2 is O(mG(n)).

Proof The cost of the MERGE instructions is clearly O(n). The cost of execut-
ing all FIND instructions is proportional to the number of instructions plus the
sum, over all FIND’s, of the number of vertices moved by that FIND. We now show
that this sum is bounded by O(mG(n)).

Let v be a vertex in as. If before a move of v the father of v is in a lower rank
group (smaller value of j), assign the cost to the FIND instruction. Otherwise,
assign the cost to v itself. For an instruction FIND(i), consider the path from
vertex to the root of its tree. The ranks of vertices along the path to the root are
monotonically increasing, and hence there can be on the path at most G(n) vertices
whose fathers are in a lower rank group. Hence no FIND instruction is assigned a
cost more than G(n).

By Lemma 7, there are at most 2n/logSn vertices in as, and by Lemma 4,
each vertex in a can be moved at most logJn times before its new father is in
aj_ or a lower rank group. Thus, the total cost of moving vertices in aj, not count-
ing moves of a vertex whose father is in a lower rank group, is 2n. Since there are
at most G(n) + rank groups, the total cost exclusive of that charged to FIND’s
is O(nG(n)). Hence, the total cost of executing the sequence of MERGE and FIND
instructions is O(mG(n)).

logO(n) is n and logs+ l(n) log(logS(n)) logS(log(n)). Base 2 logarithms are assumed through-
OUt.
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COROLLARY. Ifm <_ anforfixed constant a, then Algorithm 2 requires O(nG(n))
time.

4. An application. One application of the set merging algorithms is to process
a sequence of instructions of the forms INSERT(i), __< _< n, and MIN. Start
with a set S which is initially the empty set. Each time an instruction INSERT(i)
is encountered, adjoin the integer to the set S. Each time a MIN instruction is
executed, delete the minimum element from the set S and print it. We assume that
for each i, the instruction INSERT(i) appears at most once in the sequence of
instructions, and at no time does the number of MIN instructions executed exceed
the number of INSERT instructions executed. Note that as a special case, we
could sort k integers from one to n by executing INSERT instructions for each
integer, followed by k MIN instructions.

The algorithm which we shall give for this problem is off-line, in the sense that
the entire sequence of instructions must be present before processing can begin.
In contrast, Algorithms and 2 are on-line, as they can execute instructions
without knowing the subsequent instructions with which they will be presented.

Let 11, I2, ..., Ir be the sequence of INSERT and MIN instructions to be
executed. Note that r __< 2n. Let of the instructions be MIN. We shall set up a
MERGE-FIND problem whose on-line_solution will allow us to simulate the
INSERT-MIN instructions. We create objects Mi, 1 <= <__ l, where M "rep-
resents" the ith MIN instruction. We also create n objects Xi, 1 =< < n, where
X "represents" the integer i. Suppose, in addition, that there are two arrays
which, given i, enable us to find Mi or X in a single step. The following algorithm
determines for each i, that MIN instruction, if any, which causes to be printed.
Once we have that information, a list of the integers printed by 11, I2, Ir is
easily obtained in O(n)steps.

ALGORITHM 3.
1. Initially use MERGE instructions to create the following sets"

(i) Si, 2 <= <= l, consists of object Mi_ and all those Xj such that
INSERT(j) appears between the 1st and ith MIN instructions.

(ii) $1 consists of all X such that INSERT(j) appears prior to the first
MIN.

(iii) S consists of M and all Xj’s not placed by (i) or (ii).
2. for until n do

begin
FIND(X/) ;a
let Xg be in S;
f.j then
begin

TIME(i) - j;

FIND(M)
let M be in S;
MERGE(Sj, S)

end
end

We are taking the liberty of using Xi, Mi and S as arguments of FIND and MERGE, rather
than integers, as these instructions were originally defined. It is easy to see that objects and set names
could be indexed, so no confusion should arise.
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The strategy behind Algorithm 3 is to let M after the ith iteration of step 2
lie in that set Sj such that the jth MIN instruction is the first one following the kth
MIN having the property that none of the integers up to are printed by the jth
MIN. Likewise, X will be in Sj if and only if thejth MIN is the first MIN following
INSERT(m) which does not print any integer up to i. We can formalize these ideas
in the next lemma.

LEMMA 9. (a) After the i-th iteration ofstep 2 in Algorithm 3, Si,j 4: , contains

X,, (resp. Mk) if and only if j is the smallest number such that the j-th MIN follows
INSERT(m) (resp. the k-th MIN), and none of 1, 2, ..., is printed by the j-th MIN.

(b) TIME(i) -j by Algorithm 3 if and only if is printed by the j-th MIN.
Proof We show (a) and (b) simultaneously by induction on i. The basis,
0, is true by step of Algorithm 3. Part (b) of the induction holds, since if

X is in Sj when the ith iteration begins, it must be that the jth MIN follows IN-
SERT(i) but does not cause any integer smaller than to be printed. However, by
hypotheses, any MIN’s between INSERT(i) and the jth MIN do print out smaller
integers. Thus is the smallest integer available when the jth MIN is executed.

For part (a) of the induction, we need only observe that the set in which an
X,, or M belongs does not change at iteration unless it was in Sj. Then, since the
jth MIN prints i, Algorithm 3 correctly merges Sj with the set containing Mj, that
is the set of the next available MIN (or So if no further MIN’s are available).

THEOREM 3. A sequence of INSERT and MIN instructions on integers up to n
can be simulated off-line in O(nG(n)) time.

Proof We use Algorithm 3 to generate a sequence of MERGE and FIND
instructions. At most 2n MERGE’s are needed in step and at most 2n FIND’s
and n MERGE’s are needed in step 2, a total of at most 5n instructions. We can
thus, by the corollary to either Theorem or 2, simulate this sequence on-line in
O(nG(n)) steps. In doing so, we shall obtain the array TIME(i). The order in which
integers are printed by the MIN instructions can be obtained in a straightforward
manner from TIME in O(n) steps.

Acknowledgment. We are indebted to M. J. Fischer for bringing to our
attention an error in an earlier analysis of the second algorithm which attempted
to show that the time bound was linear.
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THE HARDEST CONTEXT-FREE LANGUAGE*

SHEILA A. GREIBACH?

Abstract. There is a context-free language L0 such that every context-flee language is an inverse
homomorphic image of Lo or Lo {e}. Hence the time complexity of recognition of Lo is the least
upper bound for time complexity of recognition of context-free languages. A similar result holds for
quasirealtime Turing machine languages. Several languages are given such that deterministic and
nondeterministic polynomial time acceptance are equivalent if and only if any one of them is deter-
ministic polynomial time acceptable.

Key words, context-free, quasirealtime, complexity, polynomial time recognition

1. Introduction. There have been several studies of the complexity of recogni-
tion of context-free languages. It is known that the family of deterministic context-
free languages is recognizable in linear time [1] but not in real time [2]. Context-
free languages are recognizable off-line in space log2 n [3. They can be recognized
by deterministic multitape Turing machines in time complexity n3 [4]; linear
context-free languages can be recognized in time n2 [5].

It is not known if any of these upper bounds is also a lower bound. For
example, it is not known whether there is any context-free language which cannot
be accepted in linear time by a deterministic multitape Turing machine.

In this paper we show that there exists a "hardest" context-free language Lo
in the sense that any reasonable deterministic recognition procedure for the class
of context-free languages will have as its time complexity the time it takes to
recognize Lo and will have as its tape complexity the space it takes to recognize Lo.
The demonstration of this "universal" property of Lo is constructive in the sense
that an algorithm for recognizing Lo in time p(n) (p a polynomial or other semi-
homogeneous function 1) or in space p(n) can be mechanically transformed into an
equally efficient recognizer for any other context-free language.

The idea behind this result can be extended to exhibit a specific language
holding the same relationships to 2 (the family of languages accepted in "realtime"
by nondeterministic multitape Turing machines). That is, if Lo can be accepted in
time p(n) by a deterministic multitape Turing machine for any polynomial p, then
all members of 2 can be so recognized. Since Book has shown that the class of
languages accepted by deterministic Turing machines in polynomial time is equal
to 4/ (the class of languages accepted in polynomial time by nondeterministic
Turing machines) if and only if [6, it follows that Y if and only if
Lo is in . Furthermore, all reductions involved can actually be performed by
polynomially time bounded Turing machines.

Received by the editors December 1, 1972, and in revised form, April 18, 1973. The research
represented in this paper was supported in part by the National Science Foundation under Grant
no. GJ-803.

i" Department of System Science, University of California at Los Angeles, Los Angeles, California
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A function f is semihomogeneous if for every k > 0, there is a k > 0, such that for all x > 0,
f(k,x) <= kay’(x).
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We show that every context-flee language can be expressed2 as h-l(Lo) or
h-I(L0 {e}) for a homomorphism h. 3 The algebraic statement is" the family of
context-free languages is a principal AFDL; similarly, 2 is a principal AFDL. By
way ofcontrast, the family of deterministic context-free languages is not a principal
AFDL [73.

2. Main results. In this section we exhibit a context-flee language Lo such
that every context-free language is an inverse homomorphic image of Lo or

Lo {e}. As one might guess, L0 is a nondeterministic version of a Dyck set.
DFFINITION 2.1. Let T {a l, a2, a, a2, c, } where a, a2, , 2, c, and are

all distinct. Let D be the context-free language generated by S SS, S --. aS,
S a2S?t2, S e.4 We call D a Dyck set on two letters. Let d be new and let

Lo {e} U {xcylczxd dx,cy,cz,dln >= 1,yx y, 6D, xi, zi6 T* for all i,

yi {a, a2, al, fi2}* for => 2)

Thus the language Lo selects one subword from each group set off by d’s in
such a way that the concatenation of the choices belongs to D, the Dyck set on
two letters, preceded by . In the construction below, we let Lo encode derivations
in a context-free grammar.

THEOREM 2.1. IfL is a context-free language, there is a homomorphism h such
that L- {e} h-(Lo {e}).

Proof We may assume that L does not contain the empty word. Hence
there is a grammar G (V, E, P, S) such that L=L(G) and P__ [(V-E)
x E(V E {S})*]. Thus the rules in P are of the form Z --, ay for fi e E and y
containing neither terminals nor S; we say that G is in standard form [8].

Order V- E in some way, V- E { Y, ..., Y,}, such that Y S. Define
functions , from productions into {a, a2, ill, fi2}* as follows. Ifp is the produc-
tion Y --, a, then (p) aaa; if p is the production Y --, aYe, Ym, m __> 1,
then (p)--x?t2ala2"a...aaa2’a. If i# 1, (p)= (p); if /= 1, (p)

Ca a2ax (p).
If P, {p 1,..., Pro} is the set of all productions whose right-hand sides

start with a, then h(a) c(p)c.., c(Pm)Cd; without loss of generality we can
assume Pa - for all a in Z.

Thus we must show that h(w)= xcytcztd.., dXkCYkCZkd with k [w[,6

Yi e {al, a2, al’ 2}*’ XiZi e T*, 1 <= <__ k, and Yl Yk e D if and onl if

The symbol e is used for the empty string; L is the closure of L under concatenation and
L* L U {e}.

Notice that for any language L and homomorphism h, if L can be recognized within time p(n)
(tape p(n)), then h-’(L)can be so recognized, providing p is semihomogeneous [2], [16]; for p(n) 2",
e.g., this may not be true.

4A context-jee grammar G V, Z, P, S) has finite vocabulary V, terminal vocabulary z
_

V,
initial symbol S e V- Z and finite production set P (V- 2;) x V*. If (Z, y)e P, written Z y,
and u, v e V*, then uZv uyv" the relation = is the transitive reflexive extension of =. The context-

free language generated by G is L(G) {w E’IS w}.
For a homomorphism h, h-’(L) {wlh(w) L}.
For a word w, Iwl is the length of w.
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Y Yk encodes the productions used in a left-to-right derivation of w from S. 7

It is well known (see [9] and [10] for further discussion) that D is the set of all
words canceling to e under the cancellation rules xally

_
e - xa2gt2y and that

for each w in {, al, a2, , 2}* there is a unique word of minimal length, which
we shall call kt(w), such that w _/(w). Further, w is in Init D {x] 3y, xy D} if
and only if/(w) {al, a2}**. It suffices to show that for bl, ..’, bk E, Yi,,"’,
Fir -. V E S} ), S b bk Y, Yi,. if and only if h(b bk)

X, cylczd dXkCykCZkd where yl Yk Init D and #(yl Yk) Ca a.’al
a a’a 1. If p 1, , Pk are the productions used, in order, in a left-to-right derivation
of b l.’. bkY/,’" Y/N, then Yi (Pi), =< _<_ k.

The proof is by induction on k; we shall sketch the induction step and leave
other details to the reader. Assume the result for k _>_ 1. First, suppose k _> 1,
Sbl...bkYi,... Yir, production p is Y/,--*bk+IY,... Yt and h(bl...bk)

xlcylczld.., dXkCykCZkd, where/(Yl Yk) CalaiE"al alai’al
If we let

Yk + P {t ti2’ t a a2ta a a2’ a
then h(bk + 1) Xk + lCyk + 1CZk + lCd, and

/(Yl YkYk+ 1) Caxaizral ala)alyk+

a a,a a a a a a2ta Cl 1711

while

On the other hand, suppose h(ba bk+ 1) xlcylczld dXk+ lCyk+ lCZk+ id
and la(yl Yk + 1) {al, a2}*. Then, examining h, we see that we must have

/(Yl Yk) alaial alai’al
and

for some production

P Y bk+ Yj, Yjt"

But l(yl yyk+ 1) {al, a2}* implies that s il. By the induction hypothesis,

S * bl bYi, Yi,

and hence

We notice in passing that if we use the proof of Theorem 2.1 to express a
context-free language L as h-l(L0), the homomorphism h applied to a word w in

If in every step of a derivation the leftmost nonterminal is expanded, it is a left-to-right derivation.
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L encodes possible derivations for w in a context-free grammar G for L. Thus, for
example, it is possible to select a grammar Go for Lo such that the number of
derivations of h(w) in Go is precisely the number of derivations of w in G; in this
sense homomorphism h "preserves multiplicities". 8 Furthermore, Go can be so
selected that an efficient parser for Lo (i.e., a recognizer which gives as output for
y appropriate representations of derivations of y in Go) can be converted auto-
matically into an efficient parser for L.

DEFINITION 2.2. An AFDL is a family of languages containing at least one
nonempty e-free 9 language and closed under inverse gsm mappings,1 marked
union and star, 11 and removal of endmarkers. 12 The least AFDL containing a
language L is denoted by (L) and is called a principal AFDL.

Since a homomorphism is a gsm mapping, the following corollary is immediate.
COROLLARY. The family of context-free languages forms a principal AFDL.
By the results of Chandler [111, the family of context-free languages can be

accepted deterministically by a family of one-way machines with a finite number
of tape symbols and instructions which define only context-free languages. So
there is a deterministic acceptance scheme for the context-free languages. However,
this scheme is of no practical use since it consists of reading an input, performing a
finite state translation (a gsm mapping) onto a working tape, and then consulting
an oracle at the end.

What is more significant is that we have a rather precise way of saying that
the complexity of the family of context-free languages is precisely the complexity
of the language Lo. If we have a deterministic machine M accepting a language
L in time p(n) and a homomorphism h, then we can construct from M and h an
acceptor M’ for h- I(L). Basically M’ translates its input w symbol by symbol into
h(w) and feeds h(w) into M. Thus w will be accepted by m’ in time p(Ih(w)l) +
if h(w) is accepted by M’. Hence if p is semihomogeneous (and polynomials are
semihomogeneous) and M is a multitape Turing machine, we can build M’ to
accept h- (L) in time p(n). Similarly, if M is an off-line Turing machine accepting
L in space p(n), we can construct an off-line Turing machine accepting h-(L) in
space p(n). (Notice that this argument applies not just to Turing machines but
also to any "reasonable" deterministic recognition procedure.)

Hence, since we already know that Lo as a context-free language is in
Theorem 2.1 tells us that the time necessary to recognize deterministically L0 is

The question of preservation of multiplicities was brought to the author’s attention by
S. Eilenberg.

A language is e-free if it does not contain the empty word.
0 A gsm is a sextuple M (K, E, A, 6, 2, qo) where K, E, and A are finite sets of states, inputs and

outputs, 6, the transition function, is a function from K E into K, 2, the output function, is a function
from K E into A* and qo e K. We extend 6 and 2 to K E* by 6(q, e) q, 2(q, e) e, 6(q, xa)

6(6(q, x), a) and 2(q, xa) 2(q, x)2(6(q, x), a), for q e K, x e E* and a e E. If 6(q, a) p, 2(q, a) y,
we sometimes write (q, a) (p, y) and if 6(q, w) p, 2(q, w) y, we write (q, w) (p, y) for p, q e K,
aeE, weE* and yeA*. We define M(w) 2(qo, w), M-l(w) {ylM(y) wl, M(L) {M(w)lweL}
and M- I(L) {ylM(y)} e L for a word w or a language L, and call M(L) a gsm mapping and M- (L)
an inverse gsm mapping of L.

1 If L CJ L
_
E* and c E, then L U cL is a marked union of L and L and (Lc)* a marked

star of L 1.
12 If c E and L

_
E’c, then c is an endmarker of L, and removing c yields L/c {wlwc e L}.
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the (realizable) least upper bound of time complexity for deterministic recognition
of the class of context-free languages. We believe Lo to be the first known instance
of such a language.

We can extend our arguments to show that the family 2 is also a principal
AFDL. The family 5-called the family of quasirealtime languages-is the family of
all and only those languages expressible as h(L1 f-I L2 L3) where the Li are
context-free and h is a length preserving homomorphism1312]. For our purposes
we can take this as a definition of 2. Examining the proof of Theorem 2.1, we see
that a similar construction would apply to members of .

Instead of one Dyck set we need three. Let D’ and D" be two distinct renamings
of D, using vocabularies 2 and E3, where D

___
E].

We define the language fo in words. It contains the empty string and every
nonempty word in fo ends with d’s. Let T Z U 2;2 U 23 U {c, , d, $}. A word
w in T*d containing m d’s is in Lo if before the first d and then between each
consecutive pair of d’s in Lo one can select, sequentially, a triple of distinct non-
empty subwords (xi, Yi, Zi) such that

(i) xa x,,, D, Yl Ym D’ and z z,,, CD", and
(ii) for each i, a subword of the form $icxicicyicTiczicrli$ lies between the

(i 1)st and ith d’s and ii’igIi contains no occurrence of $ or d.
Thus Lo resembles a shuffle of three copies of Lo with the crucial restriction

that each triple selected lie within the same pair of $’s. Akin to Theorem 2.1, we
have the following result.

THEOREM 2.2. IfL
_

Z* is in , there is a homomorphism h such that

L- {e} h-l(o {e}).

Proof The proof follows the lines of the previous one. We have L (L(G1)
ffl L(G2) f"l L(G3)), where 2 :A* ---, 2" is a length-preserving homomorphism and
each Gi is a context-free grammar in standard form. For each Gi we define a
homomorphism hi from A* into ZI* similar to the one in the proof of Theorem 2.1
thus hi(b)- ci(pl)c... Ci(Pm)C, where i is the appropriate function mapping
productions of Gi into Ei and {p, ..., p,,} is the set of all productions of Gi of the
form Z--, by. Then if2-(a) {bl2(b) a} {bl,..., b,}, we let

h(a) Sh(b,)h2(b)h3(bl)$ Shl(bt)h2(bt)h3(b,)$d.

Then L- {e} h-’(/o {e})as desired.
COROLLARY 1. Every language in is accepted deterministically in polynomial

time if and only !f [o is so accepted.
Now R. Book [6] has shown that (the family of languages accepted by

deterministic Turing machines in polynomial time) is equal to dV (the family of
languages accepted by nondeterministic Turing machines in polynomial time) if
and only if 2 _c . Hence we have the following corollary.

COROLLARY 2. r,) ifand only ifLo e
Thus the membership problem for o is polynomially complete in the sense

of Karp [13]. The main difficulty in recognizing f-.o is that a triple xi, Yi, zi can be
13 That is, for any symbol a, h(a) is also a symbol.
14 A renaming is a length-preserving one-to-one homomorphism h" Z’ Z, where Z1 0 Z2

" if L
___

Z’, then h(L) is a renaming of L.
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selected only if cxic, cyic and czc lie between the same pair of $’s: if we could drop
this restriction, we would get a member of. But we cannot-the resulting language
is in the intersection closure of the context-free languages which is an AFDL
properly contained in 2 I123.

Indeed, results in I14 show that every language in Y can be obtained by
polynomially-bounded erasing from a language L1 VI L2 for L1 and L2 linear
context_free.15 Let us define

L, {w$1wRIwe{a,b} *} and L {wSzwRlwe{O,1}*}.
Instead of the three Dyck sets used to form Lo, "paste together" pieces of L and
L1 to form Lo
L {e} U {dUlCVlClCWlClCXlCzld dUlCVmCZmCWmC,mCX,,z,,d[m >= 1,

for/>= 1, viwixi {a, b, 0, 1,$1,$2,c} *, zi e :/: fli,

u,z, {a, b, 0, 1, S l, S29 C,

Then combining arguments in [6], [14] and this paper, we have the next corollary.
COROLLARY 3. ,A/’ if and only if L’o .
3. Conclusions and open problems. We have shown that the family ofcontext-

free languages is a principal AFDL, although the deterministic context-free
languages do not form a principal AFDL I7.

We can show certain other nondeterministic families to be principal AFDL’s.
Wegbreit’s results can be extended to show that the nondeterministic and deter-
ministic context-sensitive languages form principal AFDL’s [15. Similarly, the
recursively enumerable languages form a principal AFDL. The various non-
deterministic tape and time bounded and deterministic tape bounded Turing
machine families described in [16] and [17] are easily seen to form principal
AFDL,s.16 However the same question-do they form a principal AFDL-is open
in other cases such as the one-way stack [18 and checking automata languages
[193, and for various subfamilies of the context-free languages such as the one-
counter languages; it is likewise unknown if every linear context-free language can
be obtained from one language by inverse gsm mappings and derivatives. We
suspect that the answer is no in all the cases mentioned, though for varying reasons.

Of course, the major open questions posed by this work concern the actual
time complexity of Lo and/,o. These appear as difficult as ever.

Acknowledgments. An earlier version of this paper and other material appears
in [7. The author would like to thank the referees for useful suggestions in pre-
paring this revision.

15 A homomorphism h is polynomially bounded on L if there is a polynomial f such that Iwl
<= f(lh(w)[) for all w L.

16 Indeed, in all these cases one can express the family as {h- l(L),h- I(L {e})lh a homomorphism}
for some generator L.
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AN ALGORITHM FOR DETERMINING THE CHROMATIC
NUMBER OF A GRAPH*

D. G. CORNEIL AND B. GRAHAMt

Abstract. A heuristic algorithm for the determination of the chromatic number of a finite graph is
presented. This algorithm is based on Zykov’s theorem for chromatic polynomials, and extensive empiri-
cal tests show that it is the best algorithm available. Christofides’ algorithm for the determination of
chromatic number is described and is used in the comparison tests.

Key words, chromatic number, coloring algorithm, Zykov’s theorem

1. Introduction. This paper presents an algorithm for the determination of
the chromatic number of a graph. Empirical evidence indicates that this algorithm
is the best available.

The chromatic number of a graph G, denoted z(G), is the minimum number
of colors required to color the graph such that no two adjacent vertices have the
same color. Christofides 1] and Welsh and Powell 10 mention several practical
applications of this property of a graph. For example, it can be used to solve an
examination scheduling problem;in this application each examination is repre-
sented by a node of a graph and an edge joining two vertices indicates that because
of a candidate’s conflict, the corresponding examinations may not be held at the
same time. The chromatic number of this graph is the minimum number of periods
required to hold all examinations. In addition, the chromatic number problem
belongs to the Cook-Karp class [5] which also includes the subgraph isomorphism,
the Hamiltonian circuit and the maximal clique problems. Problems in the Cook-
Karp class are polynomially equivalent, i.e., either each of them possesses a
polynomially bounded algorithm or none of them does.

The best known algorithms for the determination of chromatic number are
Christofides’ algorithm [1] and an algorithm based on a corollary to Zykov’s
theorem for chromatic polynomials [13]. As mentioned by Hedetniemi [4],
no extensive work has been done to compare these two methods.

Our algorithm is a modification and extension of the Zykov algorithm. We
also present the results of extensive empirical tests [3 which were conducted to
compare the storage and time requirements of our algorithm with that of
Christofides.

2. Our algorithm.
2.1. The Zykov algorithm. As mentioned in the Introduction, our algorithm

is a modification and extension of the Zykov algorithm. Before describing Zykov’s
method, we introduce the concept of reduction of a graph.

Received by the editors March 13, 1973. This research was supported by the National Research
Council of Canada.

5" Department of Computer Science, University of Toronto, Toronto, Canada.
This algorithm will be referred to as Zykov’s algorithm.
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DEFINITION. Let G(V, E) be a graph with nonadjacent vertices x and y.
The reduced graphs of G are G,y and Gy, where

(i) G’, G’x(V’, E’) V’ V; E’ E + (x, y) (i.e., G is obtained from G
by adding the edge (x, y)).

(ii) Gxy Gxy(V, E"); V"= V- y,

(i,j) 6 E" iff (i,j) 6 E for i,j % x,

(i,x)6E" iff (i,x)E or (i,y)6E,

(i.e., Gy is obtained from G by coalescing (identifying) the vertices x and y).
For example, Fig. shows a graph G together with a pair of reduced graphs.

X

G’. G

Y

FIG.

Obviously any graph which is not complete can be reduced; a complete
graph is irreducible, and the chromatic number of the irreducible graph Ks is .
If either G’xy or Gy is reducible, the process can be continued until all graphs
obtained are irreducible; at this stage G is said to be completely reduced, and

(1) R(G) {G,, G2, ".., G}
is the set of irreducible graphs thus obtained. Also let

(2) R’(G) {G’, G, ..., G’,}
denote a set of graphs produced at some intermediate stage of the reduction
process. For example,

R’(G) Gxy, Gxy}
after just one reduction step.
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Theorem below is the corollary to Zykov’s theorem 13] on which the
Zykov algorithm is based.

THEOREM 1. If X and y are nonadjacent vertices in G, then z(G) min [z(G’xy),

Proof. For a proof of this theorem, see [3].
Theorem can be applied recursively, so when G is completely reduced to

R(G) (cf. (1)), we have

(3) z(G) min [11, IGI, ", IGI].

Similarly when G is partially reduced to R’(G) (cf. (2)), we have

(4) z(G) min [z(G’), z(G3), "., z(G,)].

Figure 2 shows an application of the Zykov algorithm. We note from the figure
that the algorithm has produced a binary tree (the Zykov tree) where each node
of the tree is a graph.

FIG. 2. z(G) min [5, 4, 4, 4, 3, 4, 3, 3] 3
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2.2. The improved algorithm. We will now show how the number of reduction
steps required by the Zykov algorithm may be reduced by using a branch and
bound approach [7. In our case the branching is the reduction of G to G’,y and
Gy. We now show how the branching is bounded. Consider Fig. 3, an intermediate
stage in the development of Fig. 2. At this stage we know from (4) that

z(G) min [z(A), z(B), ;(C)].

Graph C is complete (K3), so z(C) 3 and 3 is thus an upper bound for z(G);
note that each of A and B contains a 3-clique, so that 3 is a lower bound for z(A)
and Z(B). Consequently, branching from A and B is unnecessary; we conclude
that z(G) 3 without finding z(A) or Z(B). In general whenever a has been estab-
listed as an upper bound for x(G), then a graph encountered in the reduction of G
which is known to contain an a-clique need not be reduced further. This pruning
of the Zykov tree is the essence of bounding and is a major step in the development
of our algorithm.

FIG. 3

The basic bounding strategy, once a (an upper bound for z(G)) has been
obtained, is now obvious. It would, however, be poor practice to determine
whether a reducible graph H contains an a-clique since the clique finding problem
is in the Cook-Karp class mentioned in the Introduction. Instead the strategy is
to find an a-cluster2 in H, where an a-cluster is a set of a vertices which has a
high density of edges let Ha denote the subgraph of H determined by this a-cluster.
Next H is reduced to H’ and H" such that H’ is formed by adding an edge to H.

The present version of the algorithm uses an O(n3) threshold-matrix method for finding clusters,

This method is fully described in [3].
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This process is continued with H’ until the a-cluster becomes an a-clique, where-
upon this branch is terminated. Graphs formed by coalescence (e.g. H") are
treated similarly.

If e is the exact value of :(G), then the above procedure will always terminate
successfully by building a-cliques. However, if e > :(G), then at some stage a
graph introduced by coalescence will have only e- vertices, implying that
z(G) _-< e 1. Whenever this occurs, the value e is substituted for e and the
execution of the algorithm continues uninterrupted (i.e., a decrease of e does not
require a repetition of any of the previous steps). It terminates when every branch
of the Zykov tree introduced by reduction has been forced to contain an a-clique.
Upon termination, the value of z(G) will be exactly e.

We now present a concise recursive definition of the algorithm. Its most
important feature is the procedure Reduce (which might be more aptly labeled
"Reduce-if-necessary") which has two parameters: H, a graph, and N, the order
of H. Note that the algorithm essentially performs a preorder traversal [6, p. 316]
of a pruned Zykov tree such as the one in Fig. 3.

2.3. Recursive definition of our algorithm.
Main Program" (e is a global variable)

Find Initial e, an upper bound for z(G);3
Reduce (G, n);
Stop (now z(G)=

Procedure Reduce (/4, N);
if e> Nthene’=N;
/ "= e;(/ is a local variable)
if H is complete then GO TO EXIT;
Find Ha, a cluster on a-vertices;

A" if/4, is an a-clique then GO TO EXIT;
choose nonadjacent vertices x and y in Ha;
Form/4’xy and Hy by reduction of/4;
H’=H’
Reduce (H,, N 1);
If/=ethenGO TO A

else REDUCE (H, N);
(the else is necessary in case e was changed during the previous step)

EXIT" END;

3. Christofides’ algorithm. The Christofides’ algorithm [1] depends strongly
on the concept of a Maximal Internally Stable Set (or MISS) which is defined as
follows"

A MISS of a graph is a set of vertices, no two of which are adjacent, and which
is maximal with respect to this property. Thus a MISS in G is a clique in G, the
complement of G.

As shown in 8], for some graphs, the number of MISS grows exponentially
with n. For example, a graph consisting of disjoint triangles will have 3 MISS.

There are several methods for finding an initial upper bound for z(G), for example a n. How-
ever in [3] and 11] methods for finding a good upper bound for z(G) are described.
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Having found all the MISS of the graph, Theorem 2 is used to find its chromatic
number.

TI-IEOREM 2 (Christofides [1]). If a graph is r-chromatic, then it can be colored
with r colors, coloring first with one color a MISS of G, say Mi, next coloring with
another color a MISS of G Mi and so on until all the vertices are colored.

Unfortunately, Theorem 2 does not determine which MISS should be
colored at each step, so every MISS must be considered. A modification introduced
by Furtado et al [2], while not eliminating the exponential nature of the algorithm,
reduces the number of MISS investigated. Whenever a new color is introduced,
they concentrate on coloring only one of the uncolored vertices, and consequently
they consider only the MISS which contain this vertex. For obvious reasons, the
vertex which appears in fewest MISS is selected. They also suggest that it is
necessary to use the MISS-finding algorithm only once, since the MISS of G can
be used to find the MISS of G Mi.

4. Tests and results. Both our algorithm and Christofides’ algorithm were
programmed in AIGOI-W [12] and run on an IBM 370 model 165 computer.
The most efficient available version of Christofides’ algorithm [2] was used for
the tests. In order to improve the speed of this algorithm, recursive programming
and dynamic storage techniques were not employed.

4.1. Storage comparison. It has been shown [3] that any program based on
Christofides’ method may require an amount of storage which grows exponentially
with n. By use of dynamic storage allocation the maximum storage required by
our algorithm is bounded by O(n3).

4.2. Timing comparison. An extensive empirical comparison of the time
requirements of the two algorithms was made [3]. For the test, the following
three families of graphs were used.

(i) Pseudo-random graphs G(n, p).
A pseudo-random graph G(n, p) has n vertices and (n/2)(n 1).p edges. The

location of the edges within the graph is determined by some pseudo-random
mechanism.

(ii) Modified Moon-Moser graphs G(n).
Modified Moon-Moser graphs are a family of graphs with n 0 (mod 3)

vertices. Each graph is formed by constructing n/3 disjoint triangles and then
adding n/3 1 additional edges to form a chain of triangles.

(iii) Starred polygons G(n, s) [9.
A starred polygon G(n, s) is defined as follows"

V {v l, v2, Un}
E {(vi, vk),k =(i+j) modulon, =< i=< n, =<j=< s}.

Approximately two hundred test graphs were used. Our algorithm paid the over-
heads of recursion and dynamic storage allocation; these techniques were not
employed in the tested version of Christofides’ algorithm.

4.3. Results. Tables 1-3 are representative of the results obtained from the
three families of graphs tested. From these tests we conclude"
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TABLE

Observed tine and storage requirements on pseudo-random graphs

4 10
15
20
25
30
35

.8 10
15
20
25
30
35
40

Times

C--G

3.0
11.7
66.3

354.2
972.3

12785.0

1.3
6.0

16.7
177.7
845.3

2006.0
7825.0

Christofides

3.3
32.7

608.7
6324.2

2.7
11.0
27.3
361.3

4909.7

Core used

C-G

22.0
57.6

268.8
720.0
830.8
1620.0

26.4
38.4
75.6

291.2
570.4
950.4
1284.7

Christofides

29.2
94.2

653.0
4197.5

23.4
41.8
61.6

308.0
3323.2

time unit .01
unit of word 32 bits.

(i) For all graphs tested, the execution time of our algorithm was either
significantly less than that of Christofides or at worst approximately equal to it.

(ii) With one exception, the asymptotic behavior (i.e., the slope of the
log (time) vs. n plots) of our algorithm was superior to that of Christofides’
algorithm. The exception was for pseudo-random graphs with a high density
(/9 0.9) of edges;in this case the plots had approximately equal slopes.

(iii) For low values of n, the storage requirements of the algorithms are
approximately equal, but for larger graphs, Christofides’ method requires more
storage. This reflects the result that the storage requirement of our algorithm is
bounded by O(n3), while that of Christofides can grow exponentially.

TABIE 2

Observed time and storage requirements on modified Moon-Moser graphs

3
6
9
12
15
18
21

6O
63

0.0
1.7
3.3
5.0
8.3

13.3
18.3

278.3
320.0

Time

Christofides

0.0
1.7
8.3

56.7
705.0

8781.7

C-G

8
14
20
26
32
38
44

122
128

Storage

Christofides

12
25
60
166
533

2014
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TABLE 3
Observed time and storage requirements on starred polygons with (i.e., cycles)

3
6
9
12
15
18
21
24
27

54
60
63

C-G

0.0
1.7
5.0
5.0

16.7
11.7
48.3
23.3

101.7

185.0
243.0
1320.0

Time

Christofides

0.0
1.7
5.0

20.0
138.3

1235.0
11593.3

Core Used

C-G

8
14
80
26

224
38

440
50

728

110
122

3968

Christolides

12
19
42
97

281
778

2862
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